Harley-Davidson Museum

Milwaukee, WI

9/23/2011

Jonathan R. Rumbaugh Mechanical Option

Advisor: Dr. William Bahnfleth

[TECHNICAL REPORT ONE]

Table of Contents

EXECUTIVE SUMMARY	3
PROJECT BACKGROUND	4
Mechanical Summary	5
ASHRAE STANDARD 62.1	3
Section 5: Systems and Equipment	1
Section 5.1 – Natural Ventilation	6
Section 5.2 – Ventilation Air Distribution	6
Section 5.3 – Exhaust Duct Location	6
Section 5.4 – Ventilation System Controls	6
Section 5.5 – Airstream Surface	6
Section 5.6 – Outdoor Air Intake	7
Section 5.7 – Local Capture of Contaminants	7
Section 5.8 – Combustion Air	7
Section 5.9 – Particulate Matter Removal	8
Section 5.10 – Dehumidification Systems	8
Section 5.11 – Drain Pans	9
Section 5.12 – Finned-tube Coils and Heat Exchangers	0
Section 5.13 – Humidifiers and Water-Spray Systems	0
Section 5.14 – Access for Inspection, Cleaning, and Maintenance	0
Section 5.15 – Building Envelope1	0
Section 5.16 – Building with Attached Parking Garages1	0
Section 5.17 – Air Classification Recirculation1	0
Section 5.18 – Requirements for Buildings Containing ETS Areas and ETS-Free Areas.	
	1
Section 6: Ventilation Rate Procedure Analysis	3
Standard 62.1 Summary1	3

ASHRAE STANDARD 90.1	14-20
Section 5: Building Envelope	14
Section 5.1.4 - Climate	14
Section 5.4 – Mandatory Provisions	14
Section 5.5 – Prescriptive Building Envelope	14
Section 6: Heating, Ventilating, and Air Conditioning	15-18
Section 6.2 – Compliance Path(s)	15
Section 6.4 – Mandatory Provisions	16
Section 6.5 – Prescriptive Path	17
Section 6.7 – Submittals	
Section 7: Service Water Heating	
Section 7.4 – Mandatory Provisions	
Section 7.5 – Prescriptive Path	
Section 8: Power	
Section 9: Lighting	19
Section 9.4 – Mandatory Provisions	19
Section 9.5 – Building Area Method Compliance Path	19
Section 10: Other Equipment	19
Section 10.4 – Mandatory Provisions	19
ASHRAE Standard 90.1 Summary	
REFERENCES	20
APPENDIX A	21-24
APPENDIX B	24-33
APPENDIX C	

Harley-Davidson Museum

EXECUTIVE SUMMARY

This thesis technical report was conducted on the Harley-Davidson Museum in Milwaukee, Wisconsin which was completed in 2008. Separated into three distinct parts, the complex consist of a 60,000 SF Museum which houses the permanent exhibits; a 45,000 SF Annex Building which will accommodate temporary exhibits and Harley Davidson's extensive archives; and a 25,000 SF building which houses a 150-seat restaurant, a grab and go cafe, a retail space, and a special event space. The museum has an exposed structure inside and outside, but many of the areas did not permit ductwork to be visible which created a challenge for the engineers at HGA.

The purpose of this report is to evaluate

the Harley-Davidson Museum's mechanical, lighting, and electrical systems, as well as the overall construction, on the standards established by the American Society of Heating, Refrigerating, and Air Conditioning Engineers. Specifically sections 5 and 6 of ASHRAE Standard 62.1- Ventilation for Acceptable Indoor Air Quality and Section 5 through 10 of ASHRAE Standard 90.1 – Energy Standard for Buildings.

The first standard evaluated was ASHRAE Standard 62.1. The purpose of this standard is to specify minimum ventilation rates and other measures intended to provide indoor air quality that is acceptable to human occupants and that minimizes adverse health effects. A comprehensive study of the buildings compliance with the standards in sections 5 and 6 concluded that the mechanical components that control indoor air quality are in complete compliance with section 5; however, not all of the ventilation rates are in compliance with section 6 and may lead to poor indoor air quality. ASHRAE 62.1 section 6 was not used by the engineers at HGA due to the unusual occupancy of the building. Assumptions were made and are discussed later in this report.

The second standard evaluated was ASHRAE Standard 90.1. The purpose of this standard is to provide minimum equipment efficiencies and provide standards to create an energy efficient design. Overall, the Harley-Davidson Museum complied with the majority of the standards in this section; however, some standards such as wall R-value and fan efficiencies were found to be non-compliant with the standard. For a building where energy efficiency was not the main focus in the design, the Harley-Davidson Museum was still able to exceed many of the standards set forth by ASHRAE. A further investigation of the buildings energy use will be investigated in the 2nd technical report.

PROJECT BACKGROUND

HGA worked with Pentagram Architecture to transform an underutilized site with environmental and geotechnical challenges into an award winning Museum for Harley-Davidson. This attracts 350,000 visitors annually and serves as a catalyst for redevelopment of the old historical warehouse neighborhood. Suitably located in Milwaukee, a city built around manufacturing, the design of the museum was inspired by factories. The style of architecture is industrial, yet refined, particularly appropriate to which it reflects the character of Harley-Davidson. An honest architectural palette of steel, brick, and glass, creates a straightforward understanding of the building's form and reveals the reality behind its unique aesthetic.

Careful consideration went into the design to properly reflect the industrial character of Harley-Davidson. The layout of the museum was designed to follow a chronological path. The use of motorcycles, posters, film clips, and interactive displays, form a narrative of the history of Harley-Davison from its founding to the present. Encompassing a 20 acre site, this project creates an additional amenity on the riverfront for the public by creating five acres of terrace and park space on the 20 acre site.

The Harley-Davidson Museum's façade is comprised of brick metal and glass. Ebony black matte Field Brick covers the majority of the façade on all three buildings in the museum complex. Larger areas not covered by brick utilize a pre-fabricated, field assembled, curtain wall. The curtain wall is a high-rise aluminum thermally broken curtain wall framing system with windows and entrance framing systems designed to accept 1 inch of glazing material. Harley-Davidson's colors of gray, orange, and black, were applied in the design and application of the curtain wall system. Extruded bars give the curtain wall texture. Exterior aluminum decorative louvers are used to conceal rooftop mechanical systems.

All three buildings making up the Harley-Davidson have a roofing system comprised of fully adhered thermoplastic single ply membrane over tapered insulation and vapor retarder on metal decking. Roof deck is 3" 20 gage galvanized steel.

Careful consideration went into making the Harley-Davidson Museum sustainable without compromising the architectural integrity. A study was conducted on solar angles to minimize the amount of solar radiation entering the museum. Automatic louvers open and close according to the amount of sun entering the building. Extended overhangs over the windows block the sun during the hottest times of the day and year. It was important for the architects to preserve as much of the site as possible. Two water towers from the existing site were preserved and serve as architectural focal points instead of filling up a landfill. Local vegetation was planted to minimize excess watering. The river walk was preserved creating a sense of community next to the river. The river walk also serves as an alternate carbon free way to travel to and from the museum.

MECHANICAL SUMMARY

The Museum Building has two central 42,000 CFM variable air volume air handling units with two central return air points. The Retail Building has 5 constant volume air handling units serving the five separate zones: retail, kitchen, café, restaurant, and special event space. The Annex Building has 4 air handling units. The exhibit space is served by 1 custom built 21,500 CFM constant air volume air handling unit. The workshop, exhibit prep and storage are served by the 1 modular 8,000 CFM constant air volume air handling unit. General offices are served by 1 modular 5,000 CFM variable air volume air handling unit. The loading dock, security, employee bream room and remaining areas of the annex are served by 1 modular 5,000 CFM variable air volume air handling unit.

The heating water system consists of four 1500MBH sealed combustion condensing boilers with gas fired burners. The heating water system distribution is a variable-primary pumping system. Primary pumps are 386 GPM, 25 HP, variable speed, end suction base mounted type. One pump is used for stand-by. Variable speed pumps have dedicated variable speed drive controller. This heating system provides hot water heat to air handling unit hot water coils, variable air volume box reheat coils, hot water finned tube radiation, unit heaters and similar devices throughout the building.

The cooling plant consists of 2 roof mounted 250 ton air cooled rotary screw chillers and utilize R134A refrigerant. The chillers have variable speed drive control. A variable-primary pumping system with 747 GPM, 75 HP, and variable speed end suction base mounted type is utilized. The chilled water system uses a 35 percent glycol for freeze protection.

Hydronic piping distribution systems throughout the building are schedule 40 steel pipe through 10 inches and standard weight for pipe sizes 12 inches and larger. Welded joints for 3 inch and larger pipe sizes and threaded joints for 2-1/2 inch and smaller pipe sizes were preferred. Hard drawn copper pipe was acceptable for pipe sizes 1 inch and smaller.

Some energy efficiency features in the mechanical design include; operating pumps using variable speed drive controllers, multiple boilers operating at part load capacity, multiple chiller with variable speed capacity adjustment, use of outdoor air for making chilled water during winter, operating air handling units using variable speed drive controllers, use of air flow measuring stations in outdoor air intake, and use of outdoor air for cooling during cooler days.

ASHRAE STANDARD 62.12007 Section 5: Systems & Equipment

Section 5.1 – Natural Ventilation

This section is not applicable; natural ventilation is not incorporated into the design of this building.

Section 5.2 – Ventilation Air Distribution

The Harley-Davidson Museum is able to meet the ventilation air distribution requirement. Mechanical ventilation systems have means of adjustment such that the minimum ventilation airflow specified in section 6 can be maintained under any load. Section 6 is discussed later in this report. Manual dampers are located to adjust supply and return airflow to each ventilation zone. Airflow rates are clearly labeled in the design documents for balancing.

Section 5.3 – Exhaust Duct Location

Rooftop electrical fans maintain a constant negative pressure throughout the exhaust duct to prevent exhaust air leaking into occupied spaces. All exhaust ducts are held at negative 2 inch wg. Generator exhaust is insulated and sealed in accordance with SMACNA Seal Class A.

Section 5.4 – Ventilation System Controls

AHU's supplying ventilation to zones have supply and return fans each having dedicated variable speed drives. The BAS has access to all VSD control points. The supply fan starts when indexed to occupied mode by the BAS. Flow measuring stations are used to monitor the outdoor air damper minimum position to maintain the programmed minimum outside air intake set point. VAV boxes have a minimum position that meets minimum ventilation requirements for each zone given in section 6 of standard 62.1. The Harley-Davidson Museum complies with section 5.4.

Section 5.5 – Airstream Surfaces

Products that come in contact with stainless steel have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871. Flexible elastomeric duct liner is made of unicellular polyethylene thermal plastic complying with ASTM C 534. Specification state that all Non-metal ductwork is listed and labeled as complying with UL 181. All other ductwork is G90 galvanized steel and falls under the general exception for sheet metal surfaces and metal fasteners.

Section 5.6 - Outdoor Air Intake

The ventilation system outdoor intakes are designed in accordance with table 5-1 from section 5.6 of ASHRA standard 62.1. All outdoor air intakes are located such that the shortest distance from intake to any specific potential outdoor contaminant source is equal or greater than the distances listed in table 5-1.

Object	Minimum Distance, ft (m)
Significantly contaminated exhaust (Note 1)	15 (5)
Noxious or dangerous exhaust (Notes 2 and 3)	30 (10)
Vents, chimneys, and flues from combustion appliances and equipment (Note 4)	15 (5)
Garage entry, automobile leading area, or drive-in queue (Note 5)	15 (5)
Truck loading area or dock, bus parking/idling area (Note 5)	25 (7.5)
Driveway, street, or parking place (Note 5)	5 (1.5)
Thoroughfare with high traffic volume	25 (7.5)
Roof, landscaped grade, or other surface directly below intake (Notes 6 and 7)	1 (0.30)
Garbage storage/pick-up area, dumpsters	15 (5)
Cooling tower intake or basin	15 (5)
Cooling tower exhaust	25 (7.5)

TABLE 5-1 Air Intake Minimum Separation Distance

Note 1: Significantly contaminated exhaust is exhaust air with significant contaminant concentration, significant sensory-irritation intensity, or offensive odor. Note 2: Lakoratory fume hood exhaust air outlets shall be in compliance with NFPA 45-1991³ and ANSI/AIHA 29.5-1992.⁴ Note 3: Noxious or dangerous exhaust is exhaust air with highly objectionable fumes or gases and/or exhaust air with potentially dangerous particles, bioacrosols, or gases at concentrations high enough to be considered harmful. Information on separation criteria for industrial environments can be found in the ACGIH Industrial Vestilation Manual ⁵ and in the ASHRAE Handbook—HVAC Applications.⁶

(b) Chapter 6 of NFPA 31-2001⁸ for oil burning appliances and equipment, or (c) Chapter 7 of NFPA 211-2003⁹ for other combustion appliances and equipment. Note 5: Distance measured to closest place that vehicle exhaust is likely to be located.

Note 6: Nominimum separation distance applies to surfaces that are sloped more than 45 degrees from horzontal or that are less than 1 in. (3 cm) wide. Note 7: Where snow accumulation is expected, distance lised shall be increased by the expected average snow depth.

Outdoor air intakes that are part of the mechanical ventilation system meet the rain entrainment requirements of section 5.6.2. Louvers restrict wind-drive rain penetration and enlarged O.A.I plenums reduce flow velocity and the chance of rain being brought into the building.

Section 5.7 – Local Capture of Contaminants

The discharge from non-combustion equipment that captures the contaminants generated by the equipment is ducted directly to the outdoors or the equipment is specifically designed for discharge indoors; therefore, the Harley-Davidson Museum meets this requirement.

Section 5.8 - Combustion Air

The emergency generator located in the Annex building of the Harley-Davidson Museum has adequate outside air regulated by a motorized damper to ensure a full combustion process. Its exhaust is directly vented out of the building through the roof.

Section 5.9 – Particulate Matter Removal

The filters used have a minimum efficiency that meets ASHRAE standard 52.2-1999. Every AHU uses a 30% pleated pre filter followed by a 95% cartridge filter. See Air Filter Schedule for filter details in figure 1 below. These filters reduce the rate of accumulation of particulate matter and reduce the level or airborne particles that may be harmful to humans, such as microorganisms and respirable particles to a level that complies with this section.

			AII	R FI	ILTE	R S	CHEL	DULE (AF)		
					FI	LTER DA	ATA				
		TOTAL	FILTER	EFF	DEPTH	AREA	APD	SERVICE			
TAG	LOCATION	CFM	TYPE	(%)	(IN)	(SQ FT)	(IN WG)	ACCESS	MANUFACTURER	MODEL	NOTES
AF-A1A	AHU-A1	9,500	PLEATED	30	2	18.9	0.75	SIDE	PURAFIL	İ	1,2
AF-A1B	AHU-A1	9,500	CARTRIGE	95	12	18.9	1.5	SIDE	PURAFIL		1,2
AF-A2A	AHU-A2	25,200	PLEATED	30	2	54.3	0.75	SIDE	PURAFIL		1,2
AF-A2B	AHU-A2	25,200	CARTRIGE	95	12	54.3	1.5	SIDE	PURAFIL		1,2
AF-A3A	AHU-A3	16,500	PLEATED	30	2	34.1	0.75	SIDE	PURAFIL		1,2
AF-A3B	AHU-A3	16,500	CARTRIGE	95	12	34.1	1.5	SIDE	PURAFIL	ĺ	1,2
AF-A4A	AHU-A4	3,000	PLEATED	30	2	5.6	0.75	SIDE	PURAFIL		1,2
AF-A4B	AHU-A4	3,000	CARTRIGE	95	12	5.6	1.5	SIDE	PURAFIL		1,2
AF-A4C	AHU-A4	3,000	GAS PHASE	-	12	12	0.5	SIDE	PURAFIL		2,3,4
AF-AG1	GEN. RM.	16,500	PLEATED	30	2	34.1	0.75	BOTTOM	PURAFIL		2,5
AF-M1A	AHU-M1	45,000	PLEATED	30	2	104	0.75	FRONT	PURAFIL		1,2
AF-M1B	AHU-M1	45,000	CARTRIGE	95	12	104	1.5	FRONT	PURAFIL		1,2
AF-M2A	AHU-M2	45,000	PLEATED	30	2	104	0.75	FRONT	PURAFIL		1,2
AF-M2B	AHU-M2	45,000	CARTRIGE	95	12	104	1.5	FRONT	PURAFIL		1,2
AF-R1A	AHU-R1	10,400	PLEATED	30	2	21.5	0.8	SIDE	PURAFIL		1,2
AF-R1B	AHU-R1	10,400	CARTRIGE	95	12	21.5	1.5	SIDE	PURAFIL		1,2
AF-R2A	AHU-R2	3,200	PLEATED	30	2	6.9	0.75	SIDE	PURAFIL		1,2
AF-R2B	AHU-R2	3,200	CARTRIGE	95	12	6.9	1.5	SIDE	PURAFIL		1,2
AF-R3A	AHU-R3	15,000	PLEATED	30	2	30.3	0.75	SIDE	PURAFIL		1,2
AF-R3B	AHU-R3	15,000	CARTRIGE	95	12	30.3	1.5	SIDE	PURAFIL		1,2
AF-R4A	AHU-R4	11,000	PLEATED	30	2	21.9	0.75	SIDE	PURAFIL		1,2
AF-R4B	AHU-R4	11,000	CARTRIGE	95	12	21.9	1.5	SIDE	PURAFIL		1,2
AF-R5A	AHU-R5	14,200	PLEATED	30	2	28.3	0.75	SIDE	PURAFIL	l	1,2
AF-R5B	AHU-R5	14,200	CARTRIGE	95	12	28.3	1.5	SIDE	PURAFIL		1,2
NOTES:	 FILTER PA APD BASED GAS PHASE PROVIDE D FILTER BA 	RT OF RESPE ON DIRTY F WITH ACTIV EDICATED SI NK TO CONSI	CTIVE AIR H TILTER. WATED CARBON IDE ACCESS F ST OF NINE	ANDLIN FILTE ILTER (9) 24	G UNIT R MEDIA HOUSING x 24 F	SCHEDUI OUTSII ILTERS	ED IN A DE AHU. IN A 18	AIR HANDLIN 9ft. X 2ft.	G UNIT SCHEDULE. BANK.		
Figure 1											

Section 5.10 – Dehumidification Systems

The maximum relative humidity in the Harley-Davidson Museum is 50%. This complies with the limited 65% set by ASHRAE. Because of the exhibits sensitivity to humidity, the museum is held at a constant 50% RH by a tight control system. Recent tests have shown that the annex building is not able to maintain a maximum of 50% RH. This is due to an over estimate in occupancy and a reduced amount of chilled/dehumidified air to the space. There is no reheat so there is no option to over cool to dehumidify.

Section 5.11 – Drain Pans

All drain pans are designed to prevent standing water and limit water droplet carryover. Drain configurations that result in negative static pressure at the drain pan relative to the drain outlet includes a trap, shown in figure 2, to maintain a seal against the entry of ambient air while allowing complete drainage of the drain pan under any normally expected operating conditions. Specifications state -"Install drain traps for each condensate drain pan for cooling coils in air handling units and fan-coil units. Provide vented water seal and terminate with a turned-down elbow at a clear water waste hub drain." Drain pans extend downstream from the leaving face or edge to a distance that complies with section 5.11.4 and can be seen in figure 3.

Section 5.12 – Finned-tube Coils and Heat Exchangers

All drain pans are in accordance with section 5.11; therefore, they comply with section 5.12. Finned-tube coils have adequate access space for cleaning. All fin tubes used are 1 row and 40 fins per foot, having a lower pressure drop then maximum 0.75 in. specified in this section; therefore, it complies.

Section 5.13 – Humidifiers and Water-Spray Systems

Water used for humidification originates directly from a potable source. There are no obstructions downstream of the humidifier in a short enough distance that would cause condensation or collection of water; therefore, the design complies with this section. Drip pans are located under the humidifier and comply with this section and section 5.11.

Section 5.14 – Access for Inspection, Cleaning, and Maintenance

Air handling units M1 and M2 are tightly placed in individual mechanical rooms. Entry doors to these two mechanical rooms are placed strategically to allow access and removal of filters for maintenance. All other mechanical rooms have adequate space for routine maintenance specified by the National Electric Code. All ventilation systems have access doors for unobstructed access for inspection, maintenance, and calibration of ventilation system components. Mechanical chases have access panels that coordinate with architectural access.

Section 5.15 – Building Envelope

Appropriate weather barriers are provided to prevent water penetration into the envelope. An exterior vapor retarder is provided to limit water vapor diffusion to prevent condensation on cold surfaces within the envelope. Water is able to drain behind brick. All interior surfaces that may be colder than the dewpoint temperature of the surrounding air are insulated and comply with this section.

Section 5.16 – Buildings with Attached Parking Garages

The Harley-Davidson Museum does not have a parking garage; therefore, this section does not apply.

Section 5.17 – Air Classification Recirculation

Commercial kitchen hoods classified as air class 4 and 3 in table 5-2 from ASHRAE are 100% exhausted to the outside. All restrooms are also exhausted 100% to the outside. The retail, restaurant, kitchen, special events, museum, and offices each have separate air circulation with no cross contamination.

=

ABEE 01 Anoticulity	
Description	Air Class
Diazo printing equipment discharge	4
Commercial kitchen grease hoods	4
Commercial kitchen hoods other than grease	3
Laboratory hoods	4
Residential kitchen vented hoods	3

TABLE 5-2 Airstreams

Section 5.18 – Requirements for Buildings Containing ETS Areas and ETS-Free Areas

The Harley-Davidson Museum is a smoke free facility; therefore, this section does not apply.

Section 6: Ventilation Rate Procedure Analysis

ASHRAE Standard 62.1, section 6 outlines the Ventilation Rate Procedure used to design each ventilation system used in the building. A prescriptive approach is used to calculate the minimum outdoor air to individual zones in the buildings based on space category, occupancy, and floor area. Ventilation is intended to dilute contaminants in indoor spaced generated by primarily two types of sources: Occupants (bio-effluents) and off-gassing from building materials. This study is a comparison of calculated minimum ventilation to the designed ventilation of the Harley-Davidson Museum.

In this study of the mechanical ventilation of the Harley-Davidson Museum, 9 of 10 air handling units were analyzed. AHU-4A serves the paper archives in the Annex building and was not included in the study because of its limited need for ventilation and controlling requirement for humidity and temperature control.

The following calculations were used in the study and come from ASHRAE Standard 62.1 section 6.

• The ventilation rate required to control both people related sources (V_p) and building related sources (Va) is the sum of ventilation required to control each of them alone at the breathing zone (Vbz).

$$\begin{array}{ll} \circ & Vbz = Vp + Va \\ \circ & Vbz = Rp \cdot Pz + Ra \cdot Az \end{array} \tag{Equation: 6-1}$$

- Az = zone floor area (ft²)
- Pz = zone population: largest number of people expected to occupy the zone during typical usage. When Pz could not be predicted default occupant density listed in Table 6-1 ASHRAE 62.1 were used.

(Equation: 6-8)

- Rp = outdoor airflow rate per person (CFM/person) (Values from Table 6-1)
- Ra = outdoor airflow rate per unit area (CFM/ft²) (Values from Table 6-1)
- The outdoor airflow that must be provided to the zone by the supply air distribution is determined by equation 6-2

$$o \quad Voz = Vbz/Ez \tag{Equation: 6-2}$$

- Ez = zone air distribution effectiveness. In this study Ez was assumed to be 1.
- When one air handler supplies a mixture of outdoor air and recirculating air to only one zone the outdoor air intake flow (Vot) = Voz (Equation: 6-3)
- For multiple-zone recirculating systems (Vot) is determined by the following equations:
 - o <mark>Vot = Vou / Ev</mark>
 - Ev is found in ASHRAE Table 6-3 based on maximum Zp value or in ASHRAE appendix A.

o
$$Zp = Voz/Vpz$$
 (Equation: 6-5)

- Zp = zone primary outdoor air fraction
- Vpz = minimum expected primary airflow for design purposes
- o $Vou = D \cdot (Vbz)$ (Equation: 6-6)
 - D = diversity factor (assumed to be 100% in this study)

Appendix A contains spreadsheets comparing the design conditions to the minimum ventilation requirements calculated in this study to illustrate its compliance with ASHRAE Standard 62.1 section 6. Detailed calculations that follow the procedure listed above are located in Appendix B. A summary of results can be found below.

Results

AHU	Minimum OA supplyed by AHU	Minimum OA required	Complies With ASHRAE 62.1
A3	2640	6056	No
A2	7500	1620	Yes
M1	8300	13795	No
M2	8300	10633	No
R1	1120	884	Yes
R2	750	609	Yes
R3	1500	438	Yes
R4	2400	1470	Yes
R5	4500	870	Yes

Figure 2: Summary of Compliance

ASHRAE Standard 62.1 Summary

The Harley-Davidson Museum is in 100% compliance with Section 5 of ASHRAE Standard 62.1.

The Harley-Davidson Museum was not designed to comply with ASHRAE section 6. Because of the high people count the Museum owner wanted the buildings to be designed for and the low frequency of when maximum occupancy would actually be seen, the engineers at HGA used ventilation rates to only meet the ventilation code of 7.5 CFM/person. Critical zones where high occupancy is common (restaurant and retail) or zones where indoor air quality is vital (kitchen) far exceed the requirements specified by ASHRAE. The excess ventilation provides a high quality of indoor air; however, without heat recovery these systems use more energy than required to meet space loads. Museum gallery spaces utilize a VAV system and do not comply with the ASHRAE standard. The indoor air quality and occupant comfort levels of the areas that do not comply with the ASHRAE standard should still be adequate. The Museum will rarely meet the occupancy load used in the ASHRAE calculations and when the occupancy load is maximum it will be for a short duration.

ASHRAE STANDARD 90.12007 Section 5: building Envelope

Section 5.1.4 - Climate

The Harley-Davidson Museum is classified as nonresidential conditioned space located in Milwaukee, WI, corresponding to the cold-humid 6a climate zone determined by Figure/Table B-1 located in ASHRAE 90.1.

Figure B-1: Climate zones for the United States (ASHRAE)

Section 5.4 – Mandatory Provisions

The building envelope of the Harley-Davidson Museum is sealed, caulked, gasketed, or weather-stripped to minimize air leakage in all areas complying with ASHRAE 5.4.3.1. Building entrances that separate conditioned space from the exterior are protected with an enclosed vestibule equipped with self-closing doors separated no less than 7 feet.

Section 5.5 – Prescriptive Building Envelope

A building envelope comparison was conducted to examine if the design of the Harley-Davidson Museum complies with section 5.5 of ASHRAE 90.1. Worst case design values were compared to values specified in ASHRAE table 5.5-6. This study concluded that the walls of the Harley-Davidson Museum are not designed to comply with ASHRAE and allow more heat transfer than generally desired. Table-2 illustrates the results of this study.

A second comparison was conducted to examine the vertical fenestration area of the Harley-Davidson Museum to the standard set forth by ASHRAE. The study concludes that the Harley-Davidson Museum has a total vertical fenestration area of 33.5% and complies with the maximum of 40% set forth by ASHRAE. The low percent of vertical fenestration is due to the sensitivity of light in many of the gallery zones. The main gallery zone has automatic louvers that close with increase amount of sunlight. It is reported that the museum leaves the louvers closed at all times of the day; however, in this study worse case scenarios were assumed and the louvers were not analyzed in this section. Table-3 illustrates the results of this study.

	Building	Envelope R	equirements F	or Climate Z	lone 6a		
Table 5.5-6 ASHRAE		Nonreside	ntial ASHRAE	Nonresid	ential Design		
		Assembly Insulation		Assembly	Insulation	ASHRAE C	Complient
		Maximum	Min. R-Value	Maximum	Min. R-Value		
		U-value		U-value		U-value	
Opaque Elements	Construction	C-value	R-Value	C-value	R-Value	C-value	R-Value
		F-value		F-value		F-value	
Roof	Metal Building	0.065	19	0.0446	22.42152466	Yes	Yes
Walls, Above-Grade	Steel Fram	0.064	13	0.096	10.41666667	No	No
Walls, Below-Grade	Below-Grade	0.119	7.5	NA	NA	NA	NA
Floors	Mass	0.064	12.5	NA	NA	NA	NA
Slab-On-Grade Floor	Unheated	0.54	10	0.49	10.2	Yes	Yes
Opaque Doors	Swinging	0.7					
Fenestration		U-Value	SHGC	U-Value	SHGC	U-value	SHGC
Verticle Glazing	Metal Framing	0.45	0.3915	0.29	0.2697	Yes	Yes

Table 2: Building Envelope

Vertical Fenestration Area				
Total Building	Total Building	Building Total	ASHRAE	ASHRAE
Window Area (sf)	Wall Area (sf)	Window %	Standard	Compliant
30602	91234	33.50%	40%	Yes

 Table 3: Vertical Fenestration

Section 6: Heating, Ventilating, and Air Conditioning

Section 6.2 – Compliance Path(s)

ASHRAE 90.1 Section 6.2 defines two methods to evaluate the efficiency of the overall building mechanical system. The Simplified Approach method cannot be used for the Harley-Davidson Museum Building because it does not comply with section 6.3. The Mandatory Provision method is described in section 6.4

Section 6.4 – Mandatory Provisions

The Harley-Davidson Museum meets all minimum equipment efficiencies set forth in ASHRAE tables 6.8.1A through 6.8.1G. Condensing boilers and air cooled chiller compliances are illustrated in Table 4.

	Complia	nce with Sectio	n 6.4.1.1 - ASH	RAE Table 6	5.8.1	
		Conde	nsing Boilers			
			Size Category	Minimum	Design	ASHRAE
Tag	Equipment type	Subcategory	(Btu/h)	Efficiency	Efficiency	Compliant
B-M1	Hot water	Gas-Fired	>300,000	75%	86%	Yes
B-M2	Hot water	Gas-Fired	>300,000	75%	86%	Yes
B-M3	Hot water	Gas-Fired	>300,000	75%	86%	Yes
B-M4	Hot water	Gas-Fired	>300,000	75%	86%	Yes
		Air Co	oled Chiller			
	Condeser,					
CH-M1	electrically	All Capacities		2.80 COP	2.80 COP	Yes
	operated					
	Condeser,					
CH-M2	electrically	All Capacities		2.80 COP	2.80 COP	Yes
	operated					

Table 4: Compliance with Section 6.4.1.1

The Control system consists of sensors, indicators, actuators, interface equipment, accessories, and software connected to controllers operating on a network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics. The operator workstation serves the following functions: Real-time graphical viewing and control of environment, scheduling and override of building operations, collection and analysis of historical data, alarm reporting, routing, messaging and acknowledgment, and program editing. The BAS Provides a calendar type format for simplification of time-of-day scheduling and overrides of building operations. Schedules reside in operator's PC workstation, DDC Controller, and HVAC Mechanical Equipment Controller to ensure time equipment scheduling when PC is off-line; PC is not required to execute time scheduling, complying with section 6.4.3.3.1 of ASHRAE 90.1.

Zones are individually controlled by thermostatic controls responding to temperature within the zone. Thermostatic controls have a dead band of 5 degrees complying with section 6.4.3.1.2. A DDC controller and room temperature sensor modulates vav box dampers and hot water reheat coil control valves in sequence to provide heating and cooling to satisfy space temperature set points.

All supply and return ducts and plenums installed as part of the HVAC air distribution system are stated in the specs to have duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.

Section 6.5 – Prescriptive Path

All air handling units have an occupied mode and a non-occupied mode. The two air handling units serving the gallery spaces in the museum have an additional chilled water system economizer mode meeting the requirements set forth in sections 6.5.1.1 through 6.5.1.4.

Based on the Motor Nameplate Horsepower method of calculating fan system power limitations, there are 5 fan systems that exceed the allowable fan system motor nameplate hp set forth in Table 6.5.3.1.1A and illustrated in Table 5. Many of the fan powers are significantly lower than the established limit; therefore, the fans that exceed the limit by a minimal fraction will not put a noteworthy burden on the energy load of the building.

Fan	Power Lin	nitations -	ASHRAE Ta	ble 6.5.3.1.1A
Fan Tag	hp	CFM	Limit	ASHRAE Compliant
RF-A#	10.00	13860	20.79	Yes
RF-M1	20.00	36700	55.05	Yes
RF-M2	20.00	36700	55.05	Yes
SF-A1	15.00	9500	14.25	No
SF-A2	30.00	25200	37.8	yes
SF-A3	30.00	16500	24.75	No
SF-A7	7.50	3000	4.5	No
SF-M1	60.00	45000	67.5	Yes
SF-M2	60.00	45000	67.5	Yes
SF-R1	15.00	10400	15.6	Yes
SF-R2	7.50	3200	4.8	No
SF-R3	25.00	15000	22.5	No
SF-R4	15.00	11000	16.5	Yes
SF-R6	20.00	14200	21.3	Yes
RF-A1	7.50	34000	37.4	Yes
RF-R1	1.50	10400	11.44	Yes
RF-R2	2.00	14200	15.62	Yes
RF-R5	2.00	14200	15.62	Yes
EF-A1	1.00	1200	1.32	yes
EF-A2	0.17	300	0.33	Yes
EF-A3	0.75	5000	5.5	Yes
EF-M1	0.20	300	0.33	Yes
EF-M2	0.25	1700	1.87	Yes
EF-M3	1.50	7000	7.7	Yes
EF-R1	0.33	2200	2.42	Yes
EF-R2	0.75	1350	1.485	Yes
EF-R3	3.00	4800	5.28	Yes
EF-R4	3.00	5400	5.94	Yes
EF-R5	3.00	5400	5.94	Yes
EF-R6	1.50	3500	3.85	Yes
The Lim	nit for Cons	stant Volu	ime Fans is	CFM x 0.0011 and
	Variable	Volume f	ans is CFM	x 0.0015

Table 5: Fan Power

The Harley-Davidson Museum building operation personnel received full construction documents and ample training for start-up, testing and operating the control systems and equipment. Operator instructions were provided with training and included the overall operational program, equipment functions, commands, system generation, advisories, and maintenance. Construction documents and manuals provide the building owner the location and performance data on each piece of equipment, general configurations of duct and pipe distribution system.

Section 7: Service Water Heating

Section 7.4 – Mandatory Provisions

All water heating equipment, hot-water supply boiler used solely for heating potable water, and hot-water storage tanks meet the criteria listed in ASHRAE Table 7.8 and are illustrated in Table 6 below. The Museum building and the Annex building each have dedicated domestic hot water systems. Each system consists of one high efficiency sealed combustion condensing natural gas fired domestic water heater with integral 50 gal. storage tanks. Hot water is maintained at 115 deg. F. and is recirculated. The retail building has a dedicated domestic hot water system consisting of two high efficiency sealed combustion condensing natural gas fired domestic water heater with integral 75 gal. storage tanks. Hot water is maintained at 140 deg. F and is blended with cold water to provide 115 deg. F. hot water where required. 180 deg. F. hot water for kitchen use is generated locally near the point of use.

	Compliance with Section 7 - ASHRAE Table 7.8					
	Gas Water Heater					
	Performance Design ASHRAE				ASHRAE	
Тад	Equipment Type	Subcategory	Required	Performance	Compliant	
GWH-A1	Gas Storage	>75,000 BTU/h	80%	94%	Yes	
GWH-M1	Gas Storage	>75,000 BTU/h	80%	94%	Yes	
GWH-R1	Gas Storage	>75,000 BTU/h	80%	94%	Yes	
GWH-R2	Gas Storage	>75,000 BTU/h	80%	94%	Yes	

Table 6: Equipment Efficiency

Section 7.5 – Prescriptive Path

Service heating systems are exclusively used for potable water and are not used for additional functions such as space heating; therefore, this section does not apply.

Section 8: Power

The Harley-Davidson Museum wiring specification states - A voltage drop of 6% or higher is not acceptable. This does not comply with the maximum voltage drop of 2% for feeders and 3% for branch circuits set forth in ASHRAE standard 8.4.1.

Section 9: Lighting

Section 9.4 – Mandatory Provisions

Lighting in the Harley-Davidson Museum is controlled with automatic controlling devices to shut of building lighting in all space. Lights are on an "eight day" program – uniquely programed for each weekday and for holidays. Outdoor lights are connected to outdoor photoelectric switches with a monitoring range of 1.5 - 10 foot-candles. A direction lens is in front of the photocell to prevent fixed light sources from causing turn off and a time delay of 15 seconds is used to prevent false operation. Indoor spaces are equipped with occupancy sensors, which unless otherwise indicated turn lights on when its covered area is occupied and off when unoccupied. There is a time delay for turning lights off with adjusted range of 1 - 30 minutes. This design complies with ASHRAE 90.1 Section 9.4.1.1.

Section 9.5 – Building Area Method Compliance Path.

ASHRAE Table 9.5.1 specifies that museums should have a maximum of 1.1 LPD (W/ft^2). A study was completed and the results concluded that the Harley-Davidson Museum has a LPD of 1.06 complying with the ASHRAE Standard. A detailed breakdown is in Appendix C.

Section 10: Other Equipment

Section 10.4 – Mandatory Provisions

Minimum efficiencies for motors are defined by ASHRAE based on rated horsepower and motor speed. The Specifications for the Harley-Davidson Museum state that all motor efficiencies comply with NEMA MG1, thus the motors also comply with ASHRAE Table 10.8 since the values used in ASHRAE are in accordance with NEMA Standard MG1.

ASHRAE Standard 90.1 Summary

Standard 90.1 provides minimum requirements for the energy-efficient design of building and building system. The Standard specifies sensible design practices and technologies that minimize energy consumption without forgoing either the comfort or productivity of the occupants. By conducting a comprehensive comparison of the Harley-Davidson Museum to ASHRAE Standard 90.1 a detailed profile of energy efficiency can be examined.

The prescriptive performance evaluation method was used to determine compliance of ASHRAE Standard 90.1. As a whole the Harley-Davidson Museum did not comply with the standard 100%, but significantly exceeded the standard in some areas. There were several areas in the design that could lead to poor overall comfort for occupants, and excess usage of energy. The Harley-Davidson Museum was designed with great weight on the overall architectural aesthetic. Sacrifices in the HVAC system and building envelope were made in order to provide the building owner with an overall exceptional and attractive building.

The building envelope has a smaller R-value than desired by ASHRAE. A slight increase in wall thickness would allow for more insulation that could easily meet the ASRHAE Standard, although the significantly lower percent in fenestration area may compensate for the loss in R-value.

All of the equipment in the Harley-Davidson Museum is compliant with ASHRAE except for 5 fans that exceed the limit by a small fraction. This could be due the architectural limitations on ductwork size in some location in the building. A small adjustment in duct size could decrease pressure loss to a level that complies with ASHRAE.

Although the Museum has a copious amount of luminaires the LPD is below the limit set forth by ASHRAE. The lower LPD reflects the use of high efficiency advanced lighting such as LEDs and T5HO linear fluorescents.

A further evaluation of system performances will be conducted in Technical Report 2 and 3.

References:

ANSI/ASHRAE. (2007). Standard 62.1 – 2007, Ventilation for Acceptable Indoor Air Quality. Atlanta, GA: American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.

ANSI/ASHRAE. (2007). Standard 90.1 – 2007, Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta, GA: American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.

HGA, Inc. Construction Documents. HGA, Milwaukee, WI.

Project Team

- Owner: Harley-Davidson Motor Company, www.harley-davidson.com
- Construction Manager: M.A. Mortenson Company, www.mortenson.com
- Design Architect: Pentagram Architecture
- Architect of Record: Hammel, Green & Abrahamson, Inc.
- Structural and MEP Engineers: Hammel, Green & Abrahamson
- Environmental Services: The Sigma Group
- Landscape Architect: Oslund And Associates
- Civil Engineer: Graef Anhalt

<u>APPENDIX A</u>

Appendix A includes Ventilation Compliance tables for each air handler analyzed in this report. More detailed calculations are in Appendix B.

Minimum Ventilation OA (CFM) Vbz 102 102 17.0 102 17.0
Minimum Ventilation OA (CFM) Vbz 102 17.0 102 17.0
102 17.0 102 17.0
102 17.0
44 25.1
12 13.3
75 15.0
48 38.1
89 59.3
45 45.0
498 73.8
70 15.6
67 95.7
150 58.8
60 21.4
76 25.3
684 <u>52.</u> β
225 75.0
52 16.3
264 88.0
2663 40.4 3928
6056 229.4 - 3 416
Are Minimum outside aire provided by AHU, Adjusted outdoor air including zones not on list (bathrooms / intake required for corridors) system
Appendix A is used in the detailed
spreadsheets and matches with this
calculation. All other AHI is will use the
Vot off of the detailed spreadsheets

		Harl	ey-Davidsc	on Museum	Ventilation Co	mpliance							
			AF	IU-2 Tempp	rary Exhibit	-							
					Design	Minimum							
					Ventilation	Ventilation	ation % Outside Air to Design - Min						
VAV	Room #	Room Name	Building	Area	(cfm)	OA (cfm) Vbz	Ventilation.	Design - Min OA 5880 5880 5880 5880 4 4djusted outdoor air					
NA	A105c Temp Exhibit		Annex	4500	7500	1620	21.6						
	Total			4500	7500	1620	21.6	5880					
	System				7500	1620	21.6	5880 5880					
	System				7500	1620	21.6	Design - Min OA 5880 5880 5880 6 5880 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 8 8 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
The cum	of all vontilati	on to occupido	The Curre	fallminim	um outsido oir	Minimum out	side aire provided	Adjusted					
The sum		on to occupide	The Sullic			by AHU, inclu	ding zones not on	outdoor air					
	zones			carculate	eu -	intake							

		Harley-Davidson Museum Ventilation Compliance												
				AHU-M1	Museum									
	Room #	Room Name	Building	Area (sf)	Design Ventilation (CEM)	Minimum Ventilation OA (CEM) Vbz	% Outside Air to	Design - Min OA						
VAVIVITag	NOOIII #	Nooniname	Dunung	Alea (SI)	(CI WI)		Ventilation.	Design Will OA	}					
111,113,114, 116, 117,									1					
115, 112, 110, 104, 105	M170	First Floor Exhibit	Museum	9810	7540	3532	46.8		L					
109, 118, 108	M201	Theme Gallery	Museum	3000	1080	1080	100.0		L					
103	M145	Corridor	Museum	100	300	6	2.0							
107	M203	Gallery	Museum	1000	360	360	100.0							
100	M131	Corridor	Museum	410	85	24	28.2							
105	M005	Stair	Museum	410	780	24	3.1							
119, 202, 203, 201	M200	Exhibit	Museum	5040	2000	1814	90.7		1					
301	M335	Rent Space	Museum	470	480	103	21.5		l					
302	M345	Rent Space	Museum	300	330	93	28.2							
304	M325	Rent Space	Museum	1100	840	216	25.7							
								0	I					
	Total			21640	13795	7252	52.6	6543						
	System				8300	7252	<u>87</u> .4	1 <mark>04</mark> 8						
	System				8300	13795	166.2	- <mark>5</mark> 495						
The sum of all venti	lation air to	o occupide zones	The Sum (of all mini calcula	mum outside are ated	Minimum outs by AHU, includ list (bathroo	ide aire provided ling zones not on ms / corridors)	Adjusted outdoor air intake required for system						

		Ha	arley-David	lson Muse	eum Ventilation C	ompliance			
				AHU-I	M2 Museum				1
					Design	Minimum			
					Ventilation	Ventilation OA	% Outside Air to		1
VAVM Tag	Room #	Room Name	Building	Area (sf)	(CFM)	(CFM) Vbz	Ventilation.	Design - Min OA	1
124, 125	M180	Lobby	Museum	3000	540	430	79.6		1
121	M160	Office	Museum	100	30	11	36.7		1
122	M165	Security	Museum	100	200	11	5.5		
120	M155	Ticketing	Museum	480	120	43	35.8		1
123	M150	Coat Check	Museum	450	60	54	90.0		
127, 128, 129, 130,									[
133, 134, 135, 136,	M170	South Exhibit	Museum	8620	7590	3100	40.8		
204, 206, 207,208	M200	Exhibits	Museum	3240	1606	1166	72. 6		
131, 132	M202	Exhibits	Museum	2500	960	900	93.8		1
306	M315	Rent Space	Museum	460	390	103	26.4		1
305	M320	Rent Space	Museum	470	480	103	21.5		1
								0	
	Total			19420	11976	5921	49.4	6055	
	System				8300	5921	71.3	237 9	
	System				8300	10633	128.1	-2333	1
			T I C	c		Minimum outs	ide aire provided	Adjusted outdoor	
The sum of all ver	itilation all	to occupide	The Sum o	or all mini	mum outside are	by AHU, includ	ing zones not on	air intake required	1
	zones			calcula	ated	list (bathroo	ms / corridors)	for system	

um	2011

				Harley	-Davidson	Museum Ve	entilation	Compliance		
						AHU-R1 Re	etail			
							Desig	gn Minimu tion Ventilation	m n OA % Outside Air	to
VAV	Ro	om #	Roo	m Name	Building	Area (sf)	(CFN	(CFM) Ventilation	bz Ventilation	. Design - Min OA
NA	F	165	F	Retail	Retail	3800	1120	0 884	78.9	236
	Т	otal				3800	112	0 884	78.9	236
	Sy	stem					1120	0 884	78.9	236
	Sy	stem					112	U 884 Minimum	78.9	236
۲he sum	of all ventila	tion air to d	occupi	de zones	The Sum o	of all minim	num outsid	le are by AHU, ir	icluding zones not	on intake required for
		1				Calculat	eu	list (bat	hrooms / corridors)	system
			Ha	arlev-David	dson Mus	eum Vent	tilation C	ompliance		
					A	IU-R2 Café	é	ompriance		
						Des	sign	Minimum		
						Venti	lation	Ventilation OA	% Outside Air to	Designed OA to Min
VAV	Room #	Room N	ame	Building	Area (sf) (CF	M)	(CFM) Vbz	Ventilation.	OA
NA	R115	Café	Ś	Retail	1300	75	50	609	81.2	
	Total				1300	75	50	609	81.2	141
	System					75	50	609	81.2	141
	System					75	50	609	81.2	141
The sur	n of all ven	tilation ai	ir to	The Sum	of all min	imum out	tside are	Minimum outs	ide aire provideo	Adjusted outdoor
				ine ounit	calcu	lated	side are	by AHU, includ	ling zones not on	air intake required
	occupiae 2	.01103			curcu	latea		list (bathroo	ms / corridors)	for system
			Ha	arley-David	dson Mus	eum Vent	tilation C	ompliance		
			Ha	arley-Davio	dson Mus AHL	eum Vent J-R3 Kitche	tilation C en	ompliance		
			Ha	arley-David	dson Mus AHL	eum Vent J-R3 Kitche Des	tilation C en sign	ompliance Minimum	% Quitcido Aista	Designed QA to Min
VAV	Poom #	PoomN	Ha	arley-David	dson Mus AHU	eum Vent J-R3 Kitche Des Venti	tilation C en sign lation	Minimum Ventilation OA	% Outside Air to	Designed OA to Min
VAV	Room #	Room N	Ha	Building	dson Mus AHL Area (sf	eum Vent J-R3 Kitche Des Ventil) (CF	tilation C en sign lation -M)	ompliance Minimum Ventilation OA (CFM) Vbz	% Outside Air to Ventilation.	Designed OA to Min OA
VAV NA	Room # R140	Room N Kitche	Ha ame en	Building Retail	dson Mus AHL Area (sf 1700	J-R3 Kitche J-R3 Kitche Des Venti) (CF 15	tilation C en sign lation ⁻ M) 500	ompliance Minimum Ventilation OA (CFM) Vbz 438	% Outside Air to Ventilation. 29.2	Designed OA to Min OA
VAV NA	Room # R140	Room N Kitche	Ha ame en	Building Retail	dson Mus AHU Area (sf 1700	eum Vent J-R3 Kitche Des Ventil) (CF 15	tilation C en sign lation M) 500	ompliance Minimum Ventilation OA (CFM) Vbz 438 438	% Outside Air to Ventilation. 29.2 29.2	Designed OA to Min OA
VAV NA	Room # R140 Total System	Room N Kitche	Ha ame en	Building Retail	dson Mus AHL Area (sf 1700	eum Vent J-R3 Kitche Des Ventil) (CF 15 15 15	tilation C en sign lation FM) 500 500	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2	Designed OA to Min OA 1062 1062
VAV NA	Room # R140 Total System System	Room N Kitche	Ha ame en	Building Retail	dson Mus AHL Area (sf 1700	eum Vent J-R3 Kitche Des Venti) (CF 15 15 15 15	tilation C en sign lation FM) 500 500 500 500	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 29.2	 Designed OA to Min OA 1062 1062 1062
VAV NA	Room # R140 Total System System	Room N Kitche	Ha ame en	Building Retail	dson Mus AHL Area (sf 1700	eum Vent J-R3 Kitche Des Venti) (CF 15 15 15 15	tilation C en sign lation M) 500 500 500 500	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 29.2 ide aire provideo	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor
VAV NA	Room # R140 Total System System n of all ven	Room N Kitche tilation ai	Ha ame en	Building Retail The Sum	Area (sf 1700	eum Vent J-R3 Kitche Des Venti) (CF 15 15 15 15	tilation C en sign lation FM) 500 500 500 500 tside are	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 by AHU, incluc	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 29.2 ide aire provideo ing zones not or	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required
VAV NA	Room # R140 Total System System n of all ven occupide z	Room N Kitche tilation ai	Ha ame en	Building Retail	Area (sf 1700 of all min calcu	eum Vent J-R3 Kitche Des Ventil) (CF 15 15 15 15 15 imum out lated	tilation C en sign lation FM) 500 500 500 500 tside are	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 by AHU, incluc list (bathroo	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors)	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system
VAV NA The sur	Room # R140 Total System System n of all ven occupide z	Room N Kitche tilation ai	Ha ame en	Building Retail	Area (sf 1700 of all min calcu	eum Vent J-R3 Kitche Des Venti) (CF 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 tside are	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs by AHU, incluc list (bathroo	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors)	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system
VAV NA The sur	Room # R140 Total System System occupide z	Room N Kitche	Ha ame en ir to Ha	Building Retail The Sum	Area (sf 1700 of all min calcu	eum Vent J-R3 Kitche Des Ventii) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 tside are tilation C	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 by A438 by A40, incluct list (bathroo ompliance	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors)	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system
VAV NA The sur	Room # R140 Total System System occupide z	Room N Kitche	Ha ame en ir to Ha	Building Retail The Sum	Area (sf 1700 of all min calcu dson Mus AHU-	eeum Vent J-R3 Kitche Des Ventii) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 tside are tilation C rant	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 by AHU, inclue list (bathroo ompliance	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors)	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system
VAV NA The sur	Room # R140 Total System System occupide z	Room N Kitche	Ha ame en ir to Ha	Building Retail The Sum	Area (sf 1700 of all min calcu dson Mus AHU-	J-R3 Kitche Des Ventil) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 500 tside are tilation C rant sign	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 by AHU, incluct list (bathroo ompliance	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors)	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system
VAV NA The sur	Room # R140 Total System System occupide z	Room N Kitche	Ha ame en ir to Ha	Building Retail The Sum arley-David	Area (sf 1700 of all min calcu dson Mus AHU-	eum Venti J-R3 Kitche Des Venti) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation M) 500 500 500 tside are tilation C rant sign lation	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs by AHU, incluc list (bathroo ompliance Minimum Ventilation OA	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors) % Outside Air to	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system
VAV NA The sur	Room # R140 Total System System occupide z	Room N Kitche tilation ai cones	Ha ame en Ha Ha	Building Retail The Sum arley-David	Area (sf 1700 of all min calcu dson Mus AHU- Area (sf	eum Venti J-R3 Kitche Des Venti) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 tside are tilation C rant sign lation FM)	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs by AHU, incluc list (bathroo ompliance Minimum Ventilation OA (CFM) Vbz	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors) % Outside Air to Ventilation.	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system Design - Min OA
VAV NA The sur	Room # R140 Total System System occupide z	Room N Kitche tilation ai cones	Ha ame en Ha ame rant	Building Retail The Sum arley-David Building Retail	Area (sf 1700 of all min calcu dson Mus AHU- Area (sf 4000	eum Venti J-R3 Kitche Des Venti) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 500 tilation C rant sign lation FM) 500	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 Minimum outs by AHU, inclue list (bathroo ompliance Minimum Ventilation OA (CFM) Vbz 1470	% Outside Air to Ventilation. 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors) % Outside Air to Ventilation. 61.25	 Designed OA to Min OA 1062 1062 1062 1062 air intake required for system Design - Min OA
VAV NA The sur	Room # R140 Total System System occupide z Room # R120	Room N Kitche tilation ai cones	Ha ame en ir to Ha ame rant	Building Retail The Sum arley-David Building Retail	Area (sf 1700 of all min calcu dson Mus AHU- Area (sf 4000	eum Vent J-R3 Kitche Des Venti) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 tside are tilation C rant sign lation FM) 100	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs by AHU, inclue list (bathroo ompliance Minimum Ventilation OA (CFM) Vbz 1470	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not or ms / corridors) % Outside Air to Ventilation. 61.25	Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system Design - Min OA
VAV NA The sur VAV NA	Room # R140 Total System System occupide z Room # R120 Total	Room N Kitche tilation ai cones	Ha ame en ir to Ha ame rant	Building Retail The Sum arley-David Building Retail	Area (sf 1700 of all min calcu dson Mus AHU- Area (sf 4000 4000	eum Vent J-R3 Kitche Des Ventii) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 tolde are tilation C rant sign lation FM) 100	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 Minimum outs by AHU, incluc list (bathroo ompliance Minimum Ventilation OA (CFM) Vbz 1470	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not or ms / corridors) % Outside Air to Ventilation. 61.25	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system Design - Min OA 930
VAV NA The sur VAV NA	Room # R140 Total System System occupide z Room # R120 Total System	Room N Kitche	Ha ame en ir to Ha ame rant	Building Retail The Sum arley-David Building Retail	Area (sf 1700 of all min calcu dson Mus AHU- Area (sf 4000 4000	eum Vent J-R3 Kitche Des Ventii) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 500 500 500 500 500 500 50	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs by AHU, incluc list (bathroo ompliance Minimum Ventilation OA (CFM) Vbz 1470 1470	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not or ms / corridors) % Outside Air to Ventilation. 61.25 61.25	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system Design - Min OA 930 930
VAV NA The sur VAV NA	Room # R140 Total System System occupide z CCUpide z Room # R120 Total System System	Room N Kitche	Ha ame en ir to Ha ame rant	Building Retail The Sum arley-David Building Retail	Area (sf 1700 of all min calcu dson Mus AHU- Area (sf 4000 4000	eum Vent J-R3 Kitche Des Ventii) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 500 500 500 500 500 500 50	ompliance Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs by AHU, inclue list (bathroo ompliance Minimum Ventilation OA (CFM) Vbz 1470 1470 1470	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not or ms / corridors) % Outside Air to Ventilation. 61.25 61.25 61.25 61.25	 Designed OA to Min OA 1062 1062 1062 Adjusted outdoor air intake required for system Design - Min OA Design - Min OA 930 930 930
VAV NA The sur VAV NA	Room # R140 Total System System occupide z Room # R120 Total System System	Room N Kitche tilation ai ones Room N Restau	Ha ame en ir to Ha ame ir to	Building Retail The Sum Building Retail The Sum	Area (sf 1700 of all min calcu dson Mus AHU- Area (sf 4000 4000	imum out	tilation C en sign lation FM) 500 500 500 500 500 500 500 500 500 50	Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs by AHU, inclue list (bathroo ompliance Minimum Ventilation OA (CFM) Vbz 1470 1470 1470 1470	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors) % Outside Air to Ventilation. 61.25 61.25 61.25 61.25 ide aire provideo	 Designed OA to Min OA 1062 1062 1062 1062 Adjusted outdoor air intake required for system Design - Min OA Design - Min OA 930 930 930 Adjusted outdoor
VAV NA The sur VAV NA	Room # R140 Total System System occupide z Room # R120 Total System System occupide z	Room N Kitche tilation ai ones Room N Restaut	Ha ame en ir to Ha rant	Building Retail The Sum Building Retail Retail	Area (sf 1700 of all min calcu dson Mus AHU- Area (sf 4000 4000 of all min calcu	imum out aceum Venti J-R3 Kitcho Des Venti) (CF 15 15 15 15 15 15 15 15 15 15 15 15 15	tilation C en sign lation FM) 500 500 500 500 500 500 500 500 500 50	Minimum Ventilation OA (CFM) Vbz 438 438 438 438 438 Minimum outs by AHU, incluc list (bathroo ompliance Minimum Ventilation OA (CFM) Vbz 1470 1470 1470 1470	% Outside Air to Ventilation. 29.2 29.2 29.2 29.2 ide aire provideo ing zones not on ms / corridors) % Outside Air to Ventilation. 61.25 61.25 61.25 61.25 ide aire provideo ing zones not on	 Designed OA to Min OA 1062 1062 1062 1062 air intake required for system Design - Min OA Design - Min OA 930 930 930 Adjusted outdoor air intake required

2011

		Ha	arley-David	dson Muse	um Ventilation C	ompliance		
				AHU-R5	Special Event			
VAV	Room #	Room Name	Building	Area (sf)	Design Ventilation (CFM)	Minimum Ventilation OA (CFM) Vbz	% Outside Air to Ventilation.	Designed OA to Min OA
NA	R215	Special Event	Retail	6160	4500	870	19.3	
	Total			6160	4500	870		3630
	System				4500	870		3630
	System				4500	870		3630
The su	um of all ve occupide z	ntilation to ones	The Sum o	of all mini calcula	mum outside are ited	Minimum outsi by AHU, includ list (bathroo	de aire provided ing zones not on ms / corridors)	Adjusted outdoor air intake required for system
						-		

APPENDIX B

This appendix includes detailed calculations for AHU ventilation.

Building:	Harley-	Davidso	n Mu	seum			
System Tag/Name:	AHU-A	2 Temp E	xhib	it			
Operating Condition Description:							
Units (select from pull-down list)	IP						
					<u> </u>	_	
Inputs for System	Name	Units			Syster	n	
Floor area served by system	As	st			45	00	
Population of area served by system (including diversity)	Ps	P		100% diversity	1	80	
Design primary supply fan airflow rate	Vpsd	cfm			25,2	00	
OA req'd per unit area for system (Weighted average)	Ras	ctm/st			0.	06	
OA req'd per person for system area (Weighted average)	Rps	cfm/p			7	.5	
Inputs for Potentially Critical zones						Potentially C	Critical Zones
Zone Name	7			the Restaurant Contract Street Contract		Temp Echibit	new zone
Zone Tag	Zone ti	ie turns p	urpie	e Italic for critical zone(s)		A105c	New zone ID
Zone rag						Museums/gall	Office space
Space type		Select fr	rom r	ull-down list		orios	Once space
Floor Area of zone	Δ7	sf	0111 P			4 500	0
Design population of zone	Pz	P	(def	ault value listed: may be ov	erridden)	180	0
Design total supply to zone (primary plus local recirculated)	Vdzd	cfm	(00.0		ornauon)	25 200	0
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?	VULU	Select fr	rom r	ull-down list or leave blank	if N/A	20,200	.
Local recirc, air % representative of ave system return air	Er	20100011	500 6	a advirting of loave blaring			75%
Inputs for Operating Condition Analyzed							
Percent of total design airflow rate at conditioned analyzed	Ds	%			100	% 100%	100%
Air distribution type at conditioned analyzed		Select fr	rom p	oull-down list		CS	CS
Zone air distribution effectiveness at conditioned analyzed	Ez					1.00	1.00
Primary air fraction of supply air at conditioned analyzed	Ep					100%	
Results						1	
Ventilation System Efficiency	Ev				1.0	0	
Outdoor air intake required for system	Vot	cfm			162	0	
Outdoor air per unit floor area	Vot/As	cfm/sf			0.3	6	
Outdoor air per person served by system (including diversity)	Vot/Ps	cfm/p			9.	0	
Outdoor air as a % of design primary supply air	Ypd	cfm			6	%	
Detailed Calculations							
Initial Calculations for the System as a whole							
Primary supply air flow to system at conditioned analyzed	Vps	cfm	=	VpdDs	= 252	00	
UncorrectedOA requirement for system	Vou	cfm	=	Rps Ps + Ras As	= 16	20	
Uncorrected OA req'd as a fraction of primary SA	Xs		=	Vou / Vps	= 0.0	06	
Initial Calculations for individual zones	_						
OA rate per unit area for zone	Raz	ctm/st				0.06	0.06
OA rate per person	Rpz	cfm/p				7.50	5.00
Total supply air to zone (at condition being analyzed)	Vdz	cfm				25200	0
Unused OA req'd to breathing zone	Vbz	cfm	=	Rpz Pz + Raz Az	=	1620.0	0.0
Unused OA requirement for zone	Voz	cfm	=	Vbz/Ez	=	1620	0
Fraction of zone supply not directly recirc. from zone	Fa		=	Ep + (1-Ep)Er	=	1.00	1.00
Fraction of zone supply from fully mixed primary air	Fb		=	Ep	=	1.00	1.00
Fraction of zone OA not directly recirc. from zone	Fc		=	1-(1-Ez)(1-Ep)(1-Er)	=	1.00	1.00
Unused OA fraction required in supply air to zone	Zd		=	Voz / Vdz	=	0.06	0.00
Unused OA fraction required in primary air to zone	Zp		=	Voz / Vpz	=	0.06	0.00
System Ventilation Efficiency	_						
Zone Ventilation Efficiency (App A Method)	Evz		=	(Fa + FbXs - FcZ) / Fa	=	1.00	1.06
System Ventilation Efficiency (App A Method)	Ev		=	min (Evz)	= 1.0	0	
Ventilation System Efficiency (Table 6.3 Method)	Ev		=	Value from Table 6.3	= 1.0	9	
Minimum outdoor air intake airflow							
Outdoor Air Intake Flow required to System	Vot	ctm	=	Vou / Ev	= 16	20	
OA intake req'd as a fraction of primary SA	Y		=	Vot / Vps	= 0.	06	
Outdoor Air Intake Flow required to System (Table 6.3 Method)	Vot	ctm	=	Vou / Ev	= 14	92 127.89	
OA intake req'd as a fraction of primary SA (Table 6.3 Method)	Y		=	Vot / Vps	= 0.0	0.08	
OA Temp at which Min OA provides all cooling		D				20	
OAT below which OA Intake flow is @ minimum		Deg F	=	{(Ip-dIst)-(1-Y)*(Ir+dTrf	= -1	92	

Building:	Harley	-Davidsoi	n Museum															
System Tag/Name:	AHU-A	2 Genera	I Office															
Operating Condition Description:	IP																	
Inputs for System Floor area served by system Population of area served by system (including diversity) Design primary supply fan airflow rate OA req'd per unit area for system (Weighted average) OA req'd per person for system area (Weighted average) Inputs for Potentially Critical zones	<u>Name</u> As Ps Vpsd Ras Rps	Units sf P cfm cfm/sf cfm/p	100% diversity	Sy	/stem 20448 58 6,591 0.11 6.0							-		Potentially C	ritical Zones			
Zone Name	Zono	litlo turno r	urple italie for critical zono(a)			Office	Office	Break Room	Security	Loading Dock	Reading	Conf Room	Visitors	Restoration	Photo	Storage	Processing	Gal
Zone Tag	201101	ille turns p				VAVA106	VAVA107	VAVA104	VAVA103	VAVA101	VAVA207	VAVA208	VAVA201	VAVA205	VAVA203	VAVA204	VAVA200	VAV
Space type		0 - 1 + 4	an an an Ul alarman Kark			Office space	Office space	Break rooms	Office space	Shipping/recei	Libraries	Conference/m	Lobbies	Wood/metal	Stages,	Storage	Storage	Museu
Floor Area of zone	Δ7	Select i	rom pull-down list			1 200	1200	400	150	ving 630	280	eeting 288	250	shop 2600	studios 1000	rooms	rooms 1250	er
Design population of zone	Pz	P	(default value listed; may be over	erridder	n)	1,200	6	400	0.75	5 0	2.6	3 14.4	6	3	1000	000	0	i i
Design total supply to zone (primary plus local recirculated)	Vdzd	cfm			,	600	600	175	90	500	126	i 150	100	675	450	280	255	ŝ
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?	F -	Select f	rom pull-down list or leave blank	if N/A			750/	750/	7500	750/	750/	750/	750/	750/	750/	750/	750/	4
Local recirc. air % representative of ave system return air	Er						15%	15%	10%	0 / 5%	10%	/5%	10%	70%	10%	15%	75%	
Percent of total design airflow rate at conditioned analyzed	Ds	%			100%	100%	100%	100%	100%	6 100%	100%	100%	100%	100%	100%	100%	100%	
Air distribution type at conditioned analyzed		Select f	rom pull-down list			CS	CS	CS	CS	S CS	CS	CS	CS	CS	CS	CS	CS	i
Zone air distribution effectiveness at conditioned analyzed	Ez					1.00	1.00	1.00	1.00	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
Primary air fraction of supply air at conditioned analyzed	Ep					100%												
Ventilation System Efficiency	Ev				0.44													
Outdoor air intake required for system	Vot	cfm			6056													
Outdoor air per unit floor area	Vot/As	s cfm/sf			0.30													
Outdoor air per person served by system (including diversity)	Vot/Ps	s cfm/p			103.6													
Outdoor air as a % of design primary supply air	тра	cfm			92%													
Detailed Calculations																		
Initial Calculations for the System as a whole																		
Primary supply air flow to system at conditioned analyzed	Vps	cfm	= VpdDs	=	6591													
Uncorrected OA regulation of primary SA	Vou	ctm	= Rps Ps + Ras As	=	2664													
Initial Calculations for individual zones	~5		= vou / vps	-	0.40													
OA rate per unit area for zone	Raz	cfm/sf				0.06	0.06	0.06	0.06	6 0.12	0.12	2 0.06	0.06	0.18	0.06	0.12	0.12	Į
OA rate per person	Rpz	cfm/p				5.00	5.00	5.00	5.00	0.00	5.00	5.00	5.00	10.00	10.00	0.00	0.00	i i
Total supply air to zone (at condition being analyzed)	Vdz	cfm				600	600	175	90	500	126	5 150	100	675	450	280	255	1
Unused OA requirement for zone	VDZ	cfm	= Rpz Pz + Raz Az	=		102.0	102.0	44.0	12.8	5 / 5.0 3 76	47.0	o 89.3 e 80	45.0	498.0	70.0	60.0	150.0	(
Fraction of zone supply not directly recirc, from zone	Fa	CIIII	= Ep + (1-Ep)Er	_		1.00	1.00	1.00	1.00) 1.00	1.00) 1.00	1.00	1.00	1.00	1.00	1.00	5
Fraction of zone supply from fully mixed primary air	Fb		= Ep	=		1.00	1.00	1.00	1.00	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	5
Fraction of zone OA not directly recirc. from zone	Fc		= 1-(1-Ez)(1-Ep)(1-Er)	=		1.00	1.00	1.00	1.00	0 1.00	1.00) 1.00	1.00	1.00	1.00	1.00	1.00	j -
Unused OA fraction required in supply air to zone	Zd		= Voz / Vdz	=		0.17	0.17	0.25	0.14	4 0.15	0.38	3 0.60	0.45	0.74	0.16	0.21	0.59	1
Unused OA fraction required in primary air to zone System Ventilation Efficiency	Zр		= voz/vpz	=		0.17	0.17	0.25	0.14	4 0.15	0.38	0.60	0.45	0.74	0.16	0.21	0.59	1
Zone Ventilation Efficiency (App A Method)	Evz		= (Fa + FbXs - FcZ) / Fa	=		1.23	1.23	1.15	1.26	3 1.25	1.03	0.81	0.95	0.67	1.25	1.19	0.82	,
System Ventilation Efficiency (App A Method)	Ev		= min (Evz)	=	0.44													
Ventilation System Efficiency (Table 6.3 Method)	Ev		= Value from Table 6.3	=	n/a													
Minimum outdoor air intake airflow			N/ /F															
Outdoor Air Intake Flow required to System	Vot	ctm	= Vou / Ev	=	6056													
Outdoor Air Intake Flow required to System (Table 6.3 Method)	Vot	cfm	= Vot / Vps = Vou / Ev	-	0.92 n/a													
OA intake reg'd as a fraction of primary SA (Table 6.3 Method)	Y	0	= Vot / Vps	=	n/a													
OA Temp at which Min OA provides all cooling																		
OAT below which OA Intake flow is @ minimum		Deg F	= ${(Tp-dTsf)-(1-Y)^{*}(Tr+dTrf)}$	=	53													

llery	Office	Bike Storage	Shop	Exhibit Prep	Staging
A202	VAVA206	VAVA209	VAVA105	VAVA102	VAVA100
ıms/gall	Office space	Storage	Wood/metal	Storage	Storage
ies		rooms	shop	rooms	rooms
500	900	5700	960	440	2200
5	4.5	0	5	0	0
70	300	1300	300	320	300
75%	75%	75%	75%	75%	75%
100%	100%	100%	100%	100%	100%
CS	CS	CS	CS	CS	CS
1.00	1.00	1.00	1.00	1.00	1.00

0.06	0.06	0.12	0.18	0.12	0.12
7.50	5.00	0.00	10.00	0.00	0.00
70	300	1300	300	320	300
67.5	76.5	684.0	222.8	52.8	264.0
68	77	684	223	53	264
1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00
0.96	0.26	0.53	0.74	0.17	0.88
0.96	0.26	0.53	0.74	0.17	0.88
0.44	1.15	0.88	0.66	1.24	0.52

Dudi dia a	Linders	Devidence													
Building:	Harley	Davidso	n Museum												
System Tag/Name:	AHU-IV	n museu	n North												
Operating Condition Description:	10														
Units (select from pull-down list)	IP														
Inputs for System	Namo	Unito		6	votom	l									
Floor area conved by system	<u>Name</u>	of		3	21640										
Floor area served by system	AS	SI			21040										
Population of area served by system (including diversity)	PS Verei	P	100% diversity		794										
Design primary supply ran airnow rate	vpsa	CIM of my /of			13,795										
OA regid per unit area for system (weighted average)	Ras	crm/sr			0.06										
OA req'd per person for system area (weighted average)	Rps	cfm/p			7.5					Detentially C	uitiaal 7 auraa				
Inputs for Potentially Critical Zones						Exhibite	Thoma	Corridor	Gallory	Potentially C	Stair	Exhibite	Pont Space	Pont Space	Pont Space
Zone Name	Zone ti	tle turns p	urple italic for critical zone(s)			EXILIBITS	Gallery	Corridor	Gallery	Comuoi	Stall	EXIIDITS	Kent Space	Kent Space	Kent Space
Zone Tag						M170	M201	M145	M203	M131	M005	M200	M335	M345	M325
Space type		Calast	and available to the t			Museums/gall	Museums/gall	Corridors	Museums/gall	Corridors	Corridors	Museums/gall	Multi-use	Multi-use	Multi-use
	A	Select I	om pull-down list			eries	eries	4.00	eries	110		eries	assembly	assembly	assembly
Floor Area of zone	AZ	ST				9,810	3000	100	1000	410	410	5040	470	300	1100
Design population of zone	Pz	P	(default value listed; may be ov	erridde	en)	392.4	120	(40	0	(201.6	10	10	20
Design total supply to zone (primary plus local recirculated)	Vdzd	cfm				7,540	1080	300	360	85	780	2000	480	330	840
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?	_	Select f	om pull-down list or leave blank	c if N/A											
Local recirc. air % representative of ave system return air	Er						75%	75%	5%	75%	75%	75%	75%	75%	75%
Inputs for Operating Condition Analyzed	_														
Percent of total design airflow rate at conditioned analyzed	Ds	%			100%	100%	100%	100%	5 100%	100%	100%	5 100%	100%	100%	100%
Air distribution type at conditioned analyzed		Select f	om pull-down list			CS	CS	CS	S CS	CS	CS	S CS	CS	CS	CS
Zone air distribution effectiveness at conditioned analyzed	Ez					1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Primary air fraction of supply air at conditioned analyzed	Ер					100%									
Results	_														
Ventilation System Efficiency	Ev				0.53										
Outdoor air intake required for system	Vot	cfm			13795										
Outdoor air per unit floor area	Vot/As	cfm/sf			0.64										
Outdoor air per person served by system (including diversity)	Vot/Ps	cfm/p			17.4										
Outdoor air as a % of design primary supply air	Ypd	cfm			100%										
Detailed Calculations															
Initial Calculations for the System as a whole															
Primary supply air flow to system at conditioned analyzed	Vps	cfm	= VpdDs	=	13795										
UncorrectedOA requirement for system	Vou	cfm	= Rps Ps + Ras As	=	7253										
Uncorrected OA reg'd as a fraction of primary SA	Xs	0	$= V_{0} V_{0}$	=	0.53										
Initial Calculations for individual zones	7.0		- 100,100	_	0.00										
OA rate per unit area for zone	Raz	cfm/sf				0.06	0.06	0.06	30.06	0.06	0.06	30.06	0.06	0.06	0.06
OA rate per unit area for 20he	Rnz	cfm/n				7.50	7.50	0.00	7 0.00	0.00	0.00	0.00	7.50	7.50	7.50
Total supply air to zono (at condition being analyzed)	Vdz	cfm				7.50	1080	300) 360	0.00	780) 2000	/.50	7.50	840
Linuard QA regid to breathing zono	V UZ	ofm		_		2521 6	1000	500) 300	24.6	700	2000	400	02.0	216.0
Unused QA requirement for zone	VDZ	ofm	= Rpz Fz + Raz Az	=		3031.0	1000.0	0.0	300.0	24.0	24.0	0 1014.4	103.2	93.0	210.0
Fraction of zone supply not directly regire from zone	V02	CIIII	$= \sqrt{D2/E2}$	=		3032	1000	1.00	300 J	20	2:) 1014	103	93	210
Fraction of zone supply hot directly recirc. from zone	га		= Ep + (1-Ep)Ei	=		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fraction of zone supply from fully mixed primary air	FD		= Ep	=		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fraction of zone OA not directly recirc. from zone	FC		= 1-(1-EZ)(1-EP)(1-EP)	=		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Unused OA fraction required in supply air to zone	Zd		= Voz / Vdz	=		0.47	1.00	0.02	2 1.00	0.29	0.03	0.91	0.22	0.28	0.26
Unused OA fraction required in primary air to zone	Ζр		= Voz / Vpz	=		0.47	1.00	0.02	2 1.00	0.29	0.03	3 0.91	0.22	0.28	0.26
System Ventilation Efficiency	_														
Zone Ventilation Efficiency (App A Method)	Evz		= (Fa + FbXs - FcZ) / Fa	=		1.06	0.53	1.51	0.53	1.24	1.49	0.62	1.31	1.24	1.27
System Ventilation Efficiency (App A Method)	Ev		= min (Evz)	=	0.53										
Ventilation System Efficiency (Table 6.3 Method)	Ev		= Value from Table 6.3	=	n/a										
Minimum outdoor air intake airflow															
Outdoor Air Intake Flow required to System	Vot	cfm	= Vou / Ev	=	13795										
OA intake req'd as a fraction of primary SA	Y		= Vot / Vps	=	1.00										
Outdoor Air Intake Flow required to System (Table 6.3 Method	Vot	cfm	= Vou / Ev	=	n/a										
OA intake req'd as a fraction of primary SA (Table 6.3 Method)	Υ		= Vot / Vps	=	n/a										
OA Temp at which Min OA provides all cooling															
OAT below which OA Intake flow is @ minimum		Deg F	= ${(Tp-dTsf)-(1-Y)*(Tr+dTrf)}$	=	55										

Building:	Harley	Davidso	n Museum												
System Tag/Name:	AHU-N	1 Museu	m												
Operating Condition Description:															
Units (select from pull-down list)	IP														
Inputs for System	Name	<u>Units</u>		S	ystem										
Floor area served by system	As	sf			19420										
Population of area served by system (including diversity)	Ps	Р	100% diversity	-	649										
Design primary supply fan airflow rate	Vpsd	cfm		-	11,976										
OA req'd per unit area for system (Weighted average)	Ras	cfm/sf			0.06										
OA req'd per person for system area (Weighted average)	Rps	cfm/p			7.3										
Inputs for Potentially Critical zones	_									Potentially C	ritical Zones				
Zone Name	Zone ti	tle turns p	urple italic for critical zone(s)			Lobby	Office	Security	Ticketing	Coat Check	Exhibits	Exhibits	Exhibits	Rent Space	Resnt Space
Zone Tag						M180	M160	M165	M155	M150	M170	M200	M202	M315	M320
Space type		Calaatt	en null deux liet			Lobbies	Office space	Office space	Office space	Storage	Museums/gai	wuseums/gall	wuseums/gall	Multi-use	wuiti-use
	۸ –	Select I	om pull-down list			2.000	100	100	400	rooms	eries	eries	eries	assembly	assembly
Floor Area of zone	AZ D=	SI	(defeult velue listed, mey be av	م سن ما ما م		3,000	100	100	480	450	8620	3240	2500	460	470
Design population of zone	PZ	P	(default value listed; may be over	erridae	en)	50	1	1	3	0	344.8	129.6	100	10	10
Design total supply to zone (primary plus local recirculated)	vaza	Cim	on null down list or loovs block	# NI/A		540	30	200	120	60	7590	1000	960	390	480
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?	Er	Select I	om pull-down list of leave blank	II N/A	l		750/	750/	750/	750/	750/	750/	750/	750/	750/
Local recirc. all % representative of ave system return air							1070	1070	1070	1070	1070	1070	1070	1070	1070
Dereast of total design airflow rate at conditioned analyzed	De	0/			100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Air distribution type at conditioned analyzed	D5	70 Soloct fi	rom null-down list		100 %	100%	100%			<u>% ۱۱۵</u>				۵٬ ۱۰۰ ۲۵	
Zone air distribution effectiveness at conditioned analyzed	Fz	Ociecti	on pail-down ist			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Primary air fraction of supply air at conditioned analyzed	En				l	1.00%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Results	ЦΡ					10070									
Ventilation System Efficiency	Fv				0.56										
Outdoor air intake required for system	Vot	cfm			10633										
Outdoor air per unit floor area	Vot/As	cfm/sf			0.55										
Outdoor air per person served by system (including diversity)	Vot/Ps	cfm/p			16.4										
Outdoor air as a % of design primary supply air	Ypd	cfm			89%										
Detailed Calculations															
Initial Calculations for the System as a whole															
Primary supply air flow to system at conditioned analyzed	Vps	cfm	= VpdDs	=	11976										
UncorrectedOA requirement for system	Vou	cfm	= Rps Ps + Ras As	=	5925										
Uncorrected OA req'd as a fraction of primary SA	Xs		= Vou / Vps	=	0.49										
Initial Calculations for individual zones															
OA rate per unit area for zone	Raz	cfm/sf				0.06	0.06	6 0.06	0.06	0.12	0.06	6 0.06	0.06	0.06	0.06
OA rate per person	Rpz	cfm/p				5.00	5.00	5.00	5.00	0.00	7.50) 7.50	7.50	7.50	7.50
Total supply air to zone (at condition being analyzed)	Vdz	cfm				540	30) 200	120	60	7590) 1606	960	390	480
Unused OA req'd to breathing zone	Vbz	cfm	= Rpz Pz + Raz Az	=		430.0	11.0) 11.0	43.8	54.0	3103.2	2 1166.4	900.0	102.6	103.2
Unused OA requirement for zone	Voz	cfm	= Vbz/Ez	=		430	11	11	44	54	3103	3 1166	900	103	103
Fraction of zone supply not directly recirc. from zone	Fa		= Ep + (1-Ep)Er	=		1.00	1.00) 1.00	1.00	1.00	1.00) 1.00	1.00	1.00	1.00
Fraction of zone supply from fully mixed primary air	Fb		= Ep	=		1.00	1.00) 1.00	1.00	1.00	1.00) 1.00	1.00	1.00	1.00
Fraction of zone OA not directly recirc. from zone	Fc		= 1-(1-Ez)(1-Ep)(1-Er)	=		1.00	1.00) 1.00	1.00	1.00	1.00) 1.00	1.00	1.00	1.00
Unused OA fraction required in supply air to zone	Zd		= Voz / Vdz	=		0.80	0.37	0.06	0.37	0.90	0.41	0.73	0.94	0.26	0.22
Unused OA fraction required in primary air to zone	Zp		= Voz / Vpz	=		0.80	0.37	0.06	0.37	0.90	0.41	0.73	0.94	0.26	0.22
System Ventilation Efficiency															
Zone Ventilation Efficiency (App A Method)	Evz		= (Fa + FbXs - FcZ) / Fa	=		0.70	1.13	3 1.44	1.13	0.59	1.09	0.77	0.56	1.23	1.28
System Ventilation Efficiency (App A Method)	Ev		= min (Evz)	=	0.56										
Ventilation System Efficiency (Table 6.3 Method)	Ev		= Value from Table 6.3	=	n/a										
Minimum outdoor air intake airflow															
Outdoor Air Intake Flow required to System	Vot	cfm	= Vou / Ev	=	10633										
OA intake req'd as a fraction of primary SA	Y		= Vot / Vps	=	0.89										
Outdoor Air Intake Flow required to System (Table 6.3 Method) Vot	cfm	= Vou / Ev	=	n/a										
OA intake req'd as a fraction of primary SA (Table 6.3 Method)	Y		= Vot / Vps	=	n/a										
OA Temp at which Min OA provides all cooling		D			50										
OAT below which OA Intake flow is @ minimum		Deg F	$= {(1p-aisi)-(1-Y)^{(1r+dirf)}}$	=	53										

Building:	Harley-	Davidso	on Mu				
System Tag/Name:	AHU-R	1 Sales					
Operating Condition Description:							
Units (select from pull-down list)	IP						
Inputs for System	Name	Units			System		
Floor area served by system	As	sf			3800		
Population of area served by system (including diversity)	Ps	Р		100% diversity	57		
Design primary supply fan airflow rate	Vpsd	cfm			1,120		
OA req'd per unit area for system (Weighted average)	Ras	cfm/sf			0.12		
OA req'd per person for system area (Weighted average)	Rps	cfm/p			7.5		
Inputs for Potentially Critical zones						Potentially C	ritical Zones
Zone Name	Zone ti	tle turns	purple	e italic for critical zone(s)		Retail	na
Zone Tag						R165	na
						Sales (except	Break rooms
Space type						as below)	
		Select	from p	oull-down list			
Floor Area of zone	Az	sf				3,800	C
Design population of zone	Pz	Ρ	(def	ault value listed; may be ov	erridden)	57	C
Design total supply to zone (primary plus local recirculated)	Vdzd	cfm				1,120	C
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?		Select	from p	oull-down list or leave blank	if N/A		
Local recirc. air % representative of ave system return air	Er						75%
Inputs for Operating Condition Analyzed	_						
Percent of total design airflow rate at conditioned analyzed	Ds	%			100%	100%	100%
Air distribution type at conditioned analyzed		Select	from p	oull-down list		CS	CS
Zone air distribution effectiveness at conditioned analyzed	Ez					1.00	1.00
Primary air fraction of supply air at conditioned analyzed	Ep					100%	
Results	_						
Ventilation System Efficiency	Ev				1.00		
Outdoor air intake required for system	Vot	ctm			884		
Outdoor air per unit floor area	Vot/As	ctm/st			0.23		
Outdoor air per person served by system (including diversity)	Vot/Ps	ctm/p			15.5		
Outdoor air as a % of design primary supply air	үра	cfm			79%	•	
Detailed Calculations							
Initial Calculations for the System as a whole							
Primary supply air flow to system at conditioned analyzed	Vps	cfm	=	VpdDs	= 1120		
UncorrectedQA requirement for system	Vou	cfm	=	Rps Ps + Ras As	= 884		
Uncorrected OA reg'd as a fraction of primary SA	Xs	0	=	Vou / Vps	= 0.79		
Initial Calculations for individual zones							
OA rate per unit area for zone	Raz	cfm/sf				0.12	0.06
OA rate per person	Rpz	cfm/p				7.50	5.00
Total supply air to zone (at condition being analyzed)	Vdz	cfm				1120	0
Unused OA reg'd to breathing zone	Vbz	cfm	=	Rpz Pz + Raz Az	=	883.5	0.0
Unused OA requirement for zone	Voz	cfm	=	Vbz/Ez	=	884	0
Fraction of zone supply not directly recirc. from zone	Fa		=	Ep + (1-Ep)Er	=	1.00	1.00
Fraction of zone supply from fully mixed primary air	Fb		=	Ep	=	1.00	1.00
Fraction of zone OA not directly recirc. from zone	Fc		=	1-(1-Ez)(1-Ep)(1-Er)	=	1.00	1.00
Unused OA fraction required in supply air to zone	Zd		=	Voz / Vdz	=	0.79	0.00
Unused OA fraction required in primary air to zone	Zp		=	Voz / Vpz	=	0.79	0.00
System Ventilation Efficiency							
Zone Ventilation Efficiency (App A Method)	Evz		=	(Fa + FbXs - FcZ) / Fa	=	1.00	1.79
System Ventilation Efficiency (App A Method)	Ev		=	min (Evz)	= 1.00		
Ventilation System Efficiency (Table 6.3 Method)	Ev		=	Value from Table 6.3	= n/a		
Minimum outdoor air intake airflow							
Outdoor Air Intake Flow required to System	Vot	cfm	=	Vou / Ev	= 884		
OA intake req'd as a fraction of primary SA	Y		=	Vot / Vps	= 0.79		
Outdoor Air Intake Flow required to System (Table 6.3 Method)	Vot	cfm	=	Vou / Ev	= n/a		
OA intake req'd as a fraction of primary SA (Table 6.3 Method)	Υ		=	Vot / Vps	= n/a		
OA Temp at which Min OA provides all cooling							
OAT below which OA Intake flow is @ minimum		Deg F	=	{(Tp-dTsf)-(1-Y)*(Tr+dTrf	= 50		

Building:		Harley-	Davidso	n Mu				
System T	ag/Name:	AHU-R	2 Café					
Operating	g Condition Description:							
Units (se	lect from pull-down list)	IP						
Inputs for	r System	Name	<u>Units</u>			Systen	1	
	Floor area served by system	As	sf			130	00	
	Population of area served by system (including diversity)	Ps	Р		100% diversity		50	
	Design primary supply fan airflow rate	Vpsd	cfm			1,60	00	
	OA req'd per unit area for system (Weighted average)	Ras	cfm/sf			0.1	8	
	OA req'd per person for system area (Weighted average)	Rps	cfm/p			7	.5	
Inputs for	r Potentially Critical zones	_					Potentially C	ritical Zones
	Zone Name	Zone tri	tle turns p	ourple	e italic for critical zone(s)		Cafe	new zone
	Zone Tag						R115	New zone ID
	Space type		0.1		udladarum Bat		Cafeteria/fast-	Office space
		A	Select f	rom p	buil-down list		food dining	
	Floor Area of zone	AZ	SI	(daf	aulturalura liatadu may ka ay	o mi dalo m)	1,300	0
	Design population of zone	PZ V d=d	P	(del	ault value listed; may be ov	emaden)	50	0
	Induction Terminal Unit Dual Fan Dual Dust or Transfer Fan?	vaza	CIIII Soloot f	rom r	will down list or loove blook	IF NI/A	1,000	0
		Er	Select	10111	Duil-down list of leave blank	II IN/A		759/
Inputs for	r Operating Condition Analyzed	EI						1070
inputs for	Percent of total design airflow rate at conditioned analyzed	Ds	%			100	% 100%	100%
	Air distribution type at conditioned analyzed	03	Select f	rom r	ull-down list	100	CS	00%
	Zone air distribution effectiveness at conditioned analyzed	F7	0010001	101111			1.00	1.00
	Primary air fraction of supply air at conditioned analyzed	Ep					100%	1.00
Results		Ξp					10070	
recure	Ventilation System Efficiency	Ev				1.0	0	
	Outdoor air intake required for system	Vot	cfm			60	9	
	Outdoor air per unit floor area	Vot/As	cfm/sf			0.4	7	
	Outdoor air per person served by system (including diversity)	Vot/Ps	cfm/p			12.	2	
	Outdoor air as a % of design primary supply air	Ypd	cfm			38	%	
Detailed (Calculations							
Initial Cal	culations for the System as a whole							
	Primary supply air flow to system at conditioned analyzed	Vps	cfm	=	VpdDs	= 160	00	
	UncorrectedOA requirement for system	Vou	cfm	=	Rps Ps + Ras As	= 60)9	
	Uncorrected OA req'd as a fraction of primary SA	Xs		=	Vou / Vps	= 0.3	38	
Initial Cal	culations for individual zones							
	OA rate per unit area for zone	Raz	cfm/sf				0.18	0.06
	OA rate per person	Rpz	cfm/p				7.50	5.00
	Total supply air to zone (at condition being analyzed)	Vdz	cfm				1600	0
	Unused OA req'd to breathing zone	Vbz	ctm	=	Rpz Pz + Raz Az	=	609.0	0.0
	Unused OA requirement for zone	Voz	cfm	=	Vbz/Ez	=	609	0
	Fraction of zone supply not directly recirc. from zone	Fa		=	Ep + (1-Ep)Er	=	1.00	1.00
	Fraction of zone supply from fully mixed primary air	Fb		=	Ep	=	1.00	1.00
	Fraction of zone OA not directly recirc. from zone	FC		=	1-(1-Ez)(1-Ep)(1-Er)	=	1.00	1.00
	Unused OA fraction required in supply air to zone	Zd		=	Voz / Vdz	=	0.38	0.00
0	Unused OA fraction required in primary air to zone	Ζр		=	voz / vpz	=	0.38	0.00
System v	entilation Efficiency	F					1.00	4.00
	Sustem Ventilation Efficiency (App A Method)	EVZ		=	(Fa + FDAS - FCZ) / Fa	= 10	n 1.00	1.38
	System ventilation Efficiency (App A Method)	EV		=	Volue from Table 6.2	= 1.0	7	
Minimum	outdoor air intako airflow	EV		=	value from rable 6.3	= 0.7		
winninum	Outdoor Air Intake almow	Vot	ofm				0	
	OA intoko rogid as a fraction of primary SA	VOL	CIIII	=	Vot / Vos	- 01	13	
	Outdoor Air Intake Flow required to System (Table 6.2 Method)	Vot	cfm	=	Vou / Ev	- 0	2	
	OA intake road as a fraction of primary SA (Table 6.3 Method)	VOI	CIIII	-	Vot / Vos	- 0	10	
	at which Min OA provides all cooling	1		-	voti vps	- 0.4		
<u>ox remp</u>	OAT below which OA Intake flow is @ minimum		Deg F	_	{(Tn-dTsf)-(1-Y)*(Tr+dTrf		7	
	on boot mildi on marchiow is a minimum		Dog i	_		- 1		

Building:		Harley-	Davidso	n Mu					
System Tag	/Name:	AHU-R	3 kitchen	۱					
Operating C	Condition Description:								
Units (select	et from pull-down list)	IP							
Inputs for Sy	ystem	Name	<u>Units</u>			Syste	em		
FI	loor area served by system	As	sf			1	600		
P	Population of area served by system (including diversity)	Ps	Р		100% diversity		20		
D	Design primary supply fan airflow rate	Vpsd	cfm			1,	500		
0	DA req'd per unit area for system (Weighted average)	Ras	cfm/sf			(0.18		
0	OA req'd per person for system area (Weighted average)	Rps	cfm/p				7.5		
Inputs for Pe	otentially Critical zones							Potentially C	ritical Zones
Z	Cone Name	Zone ti	tle turns p	ourple	e italic for critical zone(s)			Kitchen	new zone
Z	cone Tag							R140	New zone ID
S	Snace type							Cafeteria/fast-	Office space
0			Select f	rom p	oull-down list			food dining	
FI	loor Area of zone	Az	sf					1,600	0
D	Design population of zone	Pz	Р	(def	ault value listed; may be ov	erridden)		20	0
D	Design total supply to zone (primary plus local recirculated)	Vdzd	cfm					1,500	0
In	nduction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?		Select f	rom p	oull-down list or leave blank	if N/A			
Lo	ocal recirc. air % representative of ave system return air	Er							75%
Inputs for O	perating Condition Analyzed	_							
P	ercent of total design airflow rate at conditioned analyzed	Ds	%			10	0%	100%	100%
A	ar distribution type at conditioned analyzed	-	Select	rom p	bull-down list		-	CS	CS
Z	one air distribution effectiveness at conditioned analyzed	EZ					-	1.00	1.00
P	rimary air fraction of supply air at conditioned analyzed	Ер						100%	
Results	Institution Sustam Efficiency	F					~~		
V	Ventilation System Efficiency					1.	.00		
0	Jutdoor air Intake required for system	VOT	CTM of m /of			4	+30		
0	Dutdoor air per unit floor area	VOT/AS	cfm/sf			0.	.27		
0	Dutdoor air per person served by system (including diversity)	Vot/Ps	cfm/p			2	1.9		
0	buiddor air as a % or design primary suppry air	rpa	cim			4	29%		
Detailed Cal	Iculations								
Initial Calcul	lations for the System as a whole								
P	Primary supply air flow to system at conditioned analyzed	Vps	cfm	=	VodDs	= 1	500		
	IncorrectedOA requirement for system	Vou	cfm	_	Rps Ps + Ras As	_ `	438		
Ŭ	Incorrected OA regid as a fraction of primary SA	Xs	0	=	Vou / Vos	= (1 29		
Initial Calcu	lations for individual zones	710			100, 100		0.20		
0	DA rate per unit area for zone	Raz	cfm/sf					0.18	0.06
0	A rate per person	Rpz	cfm/p					7.50	5.00
T	otal supply air to zone (at condition being analyzed)	Vdz	cfm					1500	0
U	Inused OA reg'd to breathing zone	Vbz	cfm	=	Rpz Pz + Raz Az	=		438.0	0.0
U	Inused OA requirement for zone	Voz	cfm	=	Vbz/Ez	=		438	0
F	raction of zone supply not directly recirc. from zone	Fa		=	Ep + (1-Ep)Er	=		1.00	1.00
F	raction of zone supply from fully mixed primary air	Fb		=	Ep	=		1.00	1.00
Fi	raction of zone OA not directly recirc. from zone	Fc		=	1-(1-Ez)(1-Ep)(1-Er)	=		1.00	1.00
U	Inused OA fraction required in supply air to zone	Zd		=	Voz / Vdz	=		0.29	0.00
U	Inused OA fraction required in primary air to zone	Zp		=	Voz / Vpz	=		0.29	0.00
System Vent	tilation Efficiency								
Z	one Ventilation Efficiency (App A Method)	Evz		=	(Fa + FbXs - FcZ) / Fa	=		1.00	1.29
S	System Ventilation Efficiency (App A Method)	Ev		=	min (Evz)	= 1.	.00		
V	(entilation System Efficiency (Table 6.3 Method)	Ev		=	Value from Table 6.3	= 0.	.86		
Minimum ou	utdoor air intake airflow								
0	Outdoor Air Intake Flow required to System	Vot	cfm	=	Vou / Ev	= -	438		
0	DA intake req'd as a fraction of primary SA	Y		=	Vot / Vps	= (0.29		
0	Outdoor Air Intake Flow required to System (Table 6.3 Method)	Vot	cfm	=	Vou / Ev	=	510		
0	DA intake req'd as a fraction of primary SA (Table 6.3 Method)	Y		=	Vot / Vps	= 0	0.34		
OA Temp at	which Min OA provides all cooling								
0	OAT below which OA Intake flow is @ minimum		Deg F	=	{(Tp-dTsf)-(1-Y)*(Tr+dTrf	=	14		

System Tag/Name: AHU-R4 Restaurant Operating Condition Description: IP Units (select from pull-down list) IP Inputs for System Restaurant Floor area served by system (including diversity) Ps Population of area served by system (including diversity) Ps Design primary supply fan airflow rate Vpsd	
Operating Condition Description: Units (select from pull-down list) IP Inputs for System Name Units Floor area served by system As sf Population of area served by system (including diversity) Ps P Design primary supply fan airflow rate Vpsd cfm	
Units (select from pull-down list) IP Inputs for System Name Units Floor area served by system As sf Population of area served by system (including diversity) Ps 100% diversity Design primary supply fan airflow rate Vpsd cfm	
Inputs for System Name Units System Floor area served by system As sf 4000 Population of area served by system (including diversity) Ps P 100% diversity Design primary supply fan airflow rate Vpsd cfm 5,000	
Inputs for System Name Units System Floor area served by system As sf 4000 Population of area served by system (including diversity) Ps P 100%/diversity Design primary supply fan airflow rate Vpsd cfm 5,000/	
Floor area served by system As sf 4000 Population of area served by system (including diversity) Ps P 100% diversity 100 Design primary supply fan airflow rate Vpsd cfm 5,000	
Population of area served by system (including diversity) Ps P 100% diversity 100 Design primary supply fan airflow rate Vpsd cfm 5,000	
Design primary supply fan airflow rate Vpsd cfm 5.000	
OA req'd per unit area for system (Weighted average) Ras cfm/sf 0.18	
OA req'd per person for system area (Weighted average) Rps cfm/p 7.5	_
Inputs for Potentially Critical zones Potentially Critical Zo	Zones
Zone Name Zone title turns purple italic for critical zone(s) Restaurant new zone value and the critical zone (s)	zone
Zone Tag	zone ID
Space type Octant form and down list	space
Select from pull-down list food drining	
Floor Area of zone Az st 4,000	0
Design population of zone PZ P (default value listed, may be overlidden)	0
Design total supply to zone (primary plus tocal recirculated) v02d crim Induction Tarminel Unit Pune Terr Durch or Terrore Terror 2000 Crim School from pull down list or leave black if N/A	0
	750/
Locartectic, all % representative of ave system return all Er	1070
Dercent of total design airflow rate at conditioned analyzed Ds %	100%
Air distribution type at conditioned analyzed Select from pull-down list	CS
Zone air distribution effectiveness at conditioned analyzed Ez	1.00
Primary air fraction of supply air at conditioned analyzed Ep	1.00
Results	
Ventilation System Efficiency Ev 1.00	
Outdoor air intake required for system Vot cfm 1470	
Outdoor air per unit floor area Vot/As cfm/sf 0.37	
Outdoor air per person served by system (including diversity) Vot/Ps cfm/p 14.7	
Outdoor air as a % of design primary supply air Ypd cfm 29%	
Detailed Calculations	
Initial Calculations for the System as a whole	
Primary supply air flow to system at conditioned analyzed Vps cfm = VpdDs = 5000	
UncorrectedOA requirement for system Vou cfm = Rps Ps + Ras As = 1470	
Uncorrected OA req'd as a fraction of primary SA Xs = Vou / Vps = 0.29	
Initial Calculations for individual zones	
OA rate per unit area for zone Raz cfm/sf 0.18	0.06
OA rate per person Rpz cfm/p 7.50	5.00
Total supply air to zone (at condition being analyzed) Vdz cfm 5000	0
Unused UA req to breatning zone Vbz ctm = Rpz Pz + Raz Az = 1470.0	0.0
Unused UA requirement for zone Voz ctm = Vbz/Ez = 1470	0
Fraction of zone supply not directly recirc. from zone $Pa = Ep + (1-Ep)Er = 1.00$	1.00
Fraction of zone supply from fully mixed primary air $Pb = Ep = 1.00$	1.00
Fraction of zone OA not alrectly recirc. from zone $Pc = 1-(1+z)(1+z)(1+z) = 1.00$	1.00
Unused OA fraction required in supply all to zone $Za = Vaz / Vaz = 0.29$	0.00
Unitsed OA naction required in primary an to zone $2p$ = v_0z/v_0z = 0.29	0.00
System venuation Encuency (App A Mathed) Eva (55 + 5kVa 567) (55 - 5kVa 567)	1 00
Sustany force vertification (App A Method) Ev = $(ra + rux + ruz)/ra = 1.00$	1.29
Voltilation System Pfinipacy (App A Method) Ev – $\min(vz) = 1.00$	
Outdoor an induct antion	
Od intake read as a fraction of brimary SA Y = $Vot / Vos = 0.29$	
Outdoor to the flow required to System (Table 6.3 Method) Vot cfm = Vou / Ev = 1717	
OA intake real as a fraction of primary SA (Table 6.3 Method) $Y = Vat / Vas = 0.34$	
OA Temp at which Min OA provides all cooling	
OAT below which OA Intake flow is @ minimum Deg F = {(Tp-dTsf)-(1-Y)*(Tr+dTrf = 14	

Building:	Harley-	Davidso	on Mu				
System Tag/Name:	AHU-R	5 Specia	I Eve				
Operating Condition Description:							
Units (select from pull-down list)	IP						
						_	
Inputs for System	Name	Units			System		
Floor area served by system	As	sf			6160)	
Population of area served by system (including diversity)	Ps	Р		100% diversity	100)	
Design primary supply fan airflow rate	Vpsd	cfm			7,100)	
OA req'd per unit area for system (Weighted average)	Ras	cfm/sf			0.06	6	
OA req'd per person for system area (Weighted average)	Rps	cfm/p			5.0)	
Inputs for Potentially Critical zones						Potentially C	ritical Zones
Zone Name						Special Event	new zone
Zono namo	Zone ti	tle turns p	ourple	e italic for critical zone(s)			
Zone Tag						R215	New zone ID
Space type						Multipurpose	Office space
		Select 1	from p	oull-down list		assembly	
Floor Area of zone	Az	st				6,160	0
Design population of zone	Pz	P	(def	ault value listed; may be ov	erridden)	100	0
Design total supply to zone (primary plus local recirculated)	Vdzd	ctm				7,100	0
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?	_	Select f	trom p	oull-down list or leave blank	it N/A		
Local recirc. air % representative of ave system return air	Er						75%
Inputs for Operating Condition Analyzed	Do	0/			4000	40000	1000/
Air distribution time at conditioned analyzed	DS	% Calast f		will aloung light	100%	0 100%	100%
Air distribution type at conditioned analyzed	F -	Select	rrom p	Dull-down list			
Zone air distribution effectiveness at conditioned analyzed	EZ					1.00	1.00
Primary air fraction of supply air at conditioned analyzed	Ep					100%	
<u>Results</u>	F				1.00		
Ventilation System Efficiency	EV	afaa			1.00		
Outdoor air make required for system	VOL	CITI			0/0		
Outdoor air per unit floor area	VOT/AS	cim/si			0.14		
Outdoor air per person served by system (including diversity)	VOT/PS	crm/p			8.7	,	
Outdoor air as a % of design primary supply air	тра	cim			127	0	
Detailed Calculations							
Initial Calculations for the System as a whole							
Primary supply air flow to system at conditioned analyzed	Vps	cfm	=	VpdDs	= 7100)	
UncorrectedQA requirement for system	Vou	cfm	=	Rps Ps + Ras As	= 870)	
Uncorrected OA regid as a fraction of primary SA	Xs	0	=	Vou / Vps	= 0.12	2	
Initial Calculations for individual zones	,			100, 100	- 0.11	-	
OA rate per unit area for zone	Raz	cfm/sf				0.06	0.06
OA rate per person	Rpz	cfm/p				5.00	5.00
Total supply air to zone (at condition being analyzed)	Vdz	cfm				7100	0.00
Unused OA reg'd to breathing zone	Vbz	cfm	=	Roz Pz + Raz Az	=	869.6	0.0
Unused OA requirement for zone	Voz	cfm	=	Vbz/Ez	-	870	0.0
Fraction of zone supply not directly recirc, from zone	Fa	5	=	Ep + (1-Ep)Er	_	1.00	1.00
Fraction of zone supply from fully mixed primary air	Fb		-	Ep	_	1.00	1.00
Fraction of zone QA not directly recirc, from zone	Fc		=	1-(1-Ez)(1-Ep)(1-Er)	_	1.00	1.00
Unused OA fraction required in supply air to zone	Zd		=	Voz / Vdz	-	0.12	0.00
Unused OA fraction required in primary air to zone	Zn		=	Voz / Voz	_	0.12	0.00
System Ventilation Efficiency				··, •p=		0.12	0.00
Zone Ventilation Efficiency (App A Method)	Evz		=	(Fa + FbXs - FcZ) / Fa	=	1.00	1.12
System Ventilation Efficiency (App A Method)	Ev		=	min (Evz)	= 1.00		
Ventilation System Efficiency (Table 6.3 Method)	Ev		=	Value from Table 6.3	= 1.03		
Minimum outdoor air intake airflow							
Outdoor Air Intake Flow required to System	Vot	cfm	=	Vou / Ev	= 870)	
OA intake reg'd as a fraction of primary SA	Y		=	Vot / Vps	= 0.12	2	
Outdoor Air Intake Flow required to System (Table 6.3 Method)	Vot	cfm	=	Vou / Ev	= 846	23.29	
OA intake reg'd as a fraction of primary SA (Table 6.3 Method)	Y		-	Vot / Vps	= 0.13	2 0.03	
OA Temp at which Min OA provides all cooling					0.11	0.00	
OAT below which OA Intake flow is @ minimum		Deg F	=	{(Tp-dTsf)-(1-Y)*(Tr+dTrf	= -67	7	

APPENDIX C

	Lighting Power Densities															
Туре	Watt	Qty.	Total Watts	Туре	Watt	Qty.	Total Watts	Туре	Watt	Qty.	Total Watts	Туре	Watt	Qty.	Total Watts	
AF3	67	14	938	EM2	2		0	JF25	240	2	480	T4	100	12	1200	
AF4	198	8	1584	EM3	2	2	4	JF26	120	5	600	T5	100	11	1100	
AF5	29		0	EM4	2		0	JF27	35	8	280	T6	100	23	2300	
AF6	198	1	198	EM5	2		0	LF1			0	TF1	80		0	
AG1	150	24	3600	EY1			0	LF2	90	2	180	TG1	100		0	
AG2	100	18	1800	FG1	250	10	2500	LF3	46	44	2024	WH1	475	21	9975	
AG3	100	8	800	FG2	75		0	LF4	70	5	350	WH2			0	
BF1	17	2	34	FH1	44		0	LF5	31		0	WH3	290	27	7830	
CF1	61	126	7686	FH2	44	12	528	LF6	91		0	WH4	130		0	
CF2	61	25	1525	FM1			0	LF7			0	WH5	475	16	7600	
CF3	140	8	1120	JF1	70	284	19880	LF8	132		0	WH6	215	15	3225	
CF4	61	60	3660	JF2	92	4	368	LF9	90		0	WH7	215		0	
CF5			0	JF3	31	55	1705	MF1			0	WH8	215	4	860	
CF6	61	36	2196	JF4	60	27	1620	MF2	23		0	YF1	33	4	132	
CF7	31		0	JF5	240	4	960	MF3			0	YF2	31		0	
CF8			0	JF6	35	23	805	MF4	19	56	1064	YF3	44	16	704	
CF9	46	12	552	JF7	140	17	2380	MF5	198	6	1188	YF4	33	13	429	
CF10	16		0	JF8	52	16	832	MG1			0	YF5	17	36	612	
CF11	31		0	JF9	52		0	MG2			0	YF6	290		0	
CF12	70		0	JF10	244	33	8052	MG3			0	YF7			0	
CF13	31		0	JF11	63	13	819	MG4	100	3	300	YF8			0	
CF14	16		0	JF12			0	MG5	100		0	YF9	17	4	68	
CF15	42		0	JF13			0	MH1			0	YF10	33	11	363	
CF16	31		0	JF14			0	MH2	167	11	1837	YF11	33		0	
DF1	33	43	1419	JF15	105	5	525	MH3	44	1	44	YF12	33	1	33	
DF2	28	23	644	JF16	120	3	360	MM1			0	YF13	33		0	
DF3			0	JF17	31	35	1085	MM2	2/ft			YF14	44	55	2420	
DF4	33	24	792	JF18	244	33	8052	MM3	81	83	6723	YF15	190	6	1140	
DG1	75	51	3825	JF19	120	17	2040	MM4	8/ft			YG1	50	33	1650	
DG2	100	70	7000	JF20	244	2	488	MM5			0	YG2			0	
DG3	150	10	1500	JF21	120	9	1080	MM6			0	YH1	24	22	528	
DG4	50		0	JF22	120	2	240	T1	100	5	500	YH2	44	40	1760	
DH1	44		0	JF23	92		0	T2	100		0	YH3	44	52	2288	
EM1	2	31	62	JF24	35	7	245	T3	100		0	YH4	44		0	
			40935				54568				15570	YH5	44	12	528	
									[YH6	90	6	540	
												YH7			0	
												YH8	90	14	1260	LPD
															48545	1.06412
											1			Total Watts =	159618	
														-		